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Construction of Positive Exact (2 + 1)-Dimensional 
Shock Wave Solutions for Two Discrete Boltzmann 
Models 
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It is proved that (2+  1)-dimensional (space x, y; time t) positive exact shock 
wave solutions of two discrete Boltzmann models exist. For each density Ni, 
these solutions are linear combinations of three similarity shock waves, 
Ni=noi+~jnJ[1  +djexp(z~y+Tjx+pjt],  j =  1, 2, 3. Two models with four 
independent densities are investigated: the square discrete-velocity Boltzmann 
model and the model with eight velocities oriented toward the eight corners of a 
cube. The positivity problem for the densities is nontrivial. Two classes of 
solutions are considered for which the two first similarity shock wave com- 
ponents depend on only one spatial dimension, 7j = const, z j, j = 1, 2. For the 
positivity, if z~ ~2 > 0, it is sufficient to prove that the 16 asymptotic shock limits 
n0i, no/+ n3~, Z~-0 nj~, Z3=o nj~ are positive. The density solutions are built up 
with five arbitrary parameters and we prove that there exist subdomains of the 
arbitrary parameter space in which the 16 shock limits are positive. We study 
numerically two explicit shock wave solutions. We are interested in the 
movement of the shock front when the time is growing and in the possible 
appearance of bumps. In the space, at intermediate times, these bumps represent 
populations of particles which are larger than at initial time or at equilibrium 
time. 

KEY W O R D S :  Kinetic theory; discrete Boltzmann models; shock waves; 
exact solutions of nonlinear equations. 

1. I N T R O D U C T I O N  

T h e r e  h a s  b e e n  m u c h  s t u d y  o f  d i s c r e t e  B o l t z m a n n  m o d e l s ,  w h e r e  t he  

ve loc i t i e s  c a n  o n l y  t a k e  t h e  d i s c r e t e  v a l u e s  vi, [vii = 1, in  t he  h o p e  of  f i n d i n g  

usefu l  r e su l t s  for  b o t h  k i n e t i c  t h e o r y  a n d  f lu id  m e c h a n i c s .  S ince  t he  p o p u l a r  
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Broadwell (~) model, which provided for the first time an explicit solution of 
an infinite-strength shock, many others have been proposed. (2) To each 
velocity v~ is associated a density Ne and for the Ni with two spatial coor- 
dinates we must consider models velocities in a plane or in a three-dimen- 
sional space. 

In (1 + 1) dimensions (space x, time t), the exact solutions are the 
sums of two similarity shock waves, (3) and four classes of different solutions 
are known: (1)shock waves, (3) (2) periodic propagating solutions, (3) 
(3) solutions that are periodic in space but nonpropagating in time, (3-5) 
(4) densities relaxing toward nonuniform Maxwellians. (3) 

In the (2+ 1)-dimensional space, exact solutions are missing. The 
discovery of exact two-spatial-dimensional solutions could help toward 
the theoretical understanding of these models. From the physical point 
of view it is clear that (2 + 1)-dimensional solutions are more realistic 
than (1 + 1)-dimensional solutions. As we shall see, the construction of 
such solutions is relatively simple; the great difficulty is the positivity 
condition. 

The aim of this paper is twofold. First, to give a rigorous proof of the 
existence of positive shock waves, and second, to explore some physical 
aspects of these solutions. 

We consider two models; the first is the square-velocity model (2 6) 
attributed to Maxwell with v~ and v3 along the positive x and y axes, 
u "1- V2 = u "[- u = 0 ,  leading to the equations 

Nit  + Nxx = N2t - N2x = - N 3 t  - N3y = - N 4 t  + Nay 

= a N  3 N4 - N1 Nz,  a > 0 (1.1) 

The second model is cubic, (7) with eight velocities oriented toward the eight 
corners of a cube, with four independent Ni (N6 = N1, N5 = N2, N8 = N3, 
N7 =N4), and the equations reduce to (1.1) with the change of variables 
(x  + y) /2  ~ x, ( y  - x ) /2  ~ y. The total mass is M = Zi  Ni with i = 1 ..... 4 for 
the first model and i = 1 ..... 8 for the second one. Both mass and momen- 
tum conservation laws hold. For instance, M t + O~J(x) + OyJ(y) = 0 with 
components J(x)= N t -  N2 and J ty)= N 3 - N  4 for the momentum J. For 
a > 0 but a ~ 1 the microreversibility is violated. Introducing (6) the relative 
entropy H = ~ N ~  log(Ni/c~g), ~i>0,  Gtl~2=a~3~4, we find from (1.1), as 
usual, H~ + ((3x.-. + t3y .. .  ) H ~< 0. 

The similarity shock waves are 

N i = n o i + n i / D i ,  D = l + d e x p ( v y + T x + p t )  (1.2) 
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where n0i, ni, v, ?, p, d > O  are constants, while the (2 + 1)-dimensional 
solutions are simply the sums of such solutions: 

N ~ = n o i + ~ n j j D j ,  Dj= 1 + d j e x p ( v j y + T j x + & t ) ,  dj>O (1.3) 
J 

Substituting (1.3) into (1.1) and writing that the coefficients of D f  1, D f  2, 
const, (DmDp)-' ,  m Cp,  are zero, we find 

njl(pj + 7j) = np(pj -- ?j) = --np(pj + vj) = nj4(zj -- p j) 

= anj3nj4 -- njlnj2 = --a(no3nj4 + noanj3) + nolnj2 + no2njl 
(1.4) 

an03 no4 ~-- F/01 no2 

a(nm3np4 + nm4np3 ) = lqml rip2 + nm2npl, m ~ p 

Neglecting the m ~ p relations, we see that the others represent the con- 
ditions for each j t h  component to be similarity solutions. However, (1.1) is 
not a linear system; in order for the sum to be a solution we must have 
supplementary conditions [the last of (1.4)]. For  a sum of N similarity 
components we have N ( N - 1 ) / 2  supplementary conditions. Even if the 
constraints (1.4) are compatible, the solutions are physically acceptable 
only if they lead to positive Ni. 

In the sequel we consider a superposition of three similarity com- 
ponents with 25 parameters and 19 relations, leaving six arbitrary 
parameters. Although solutions satisfying (1.4) are easily found with the 
help of the computer, I was unable to find any positive solution. This 
means that we must understand the mathematical structure of the 
positivity constraints. Recently, (8) for the simplest solutions (1.3), an 
analytic proof of the existence of positive solutions was shown to be 
possible. These solutions relax toward nonuniform Maxwellians; unfor- 
tunately, they are physically poor, because their total masses are constants. 

The aim of this paper is to prove analytically that positive ( 2 +  1)- 
dimensional shock waves exist. What are the positivity constraints? In one 
spatial coordinate x we only have two asymptotic shock liits (3) when 
Ixl --, ~ for each Ni at t = 0. If these limits are positive, we can manage the 
dj so that N i > 0  for any x value. In (1.3), let us define D j =  1 + d  i exp Jr/, 
X3 =cons t l  .X~ +const2 .)(2. In the X~, -,'~2 plane at t = 0  (or x, y plane) 
six asymptotic shock limits exist for each Ni (for instance, if the axis X3 > 0 
is in the first X~, X2 quadrant, we find no~, noi + nl~, no~ + nzi, noi -1- n2~ + n3~, 
no~+naj+n3~, Znj~, j = 0  ..... 3). Unfortunately, (1.4) is much too com- 
plicated to be solved analytically and we choose a simpler situation. 

In this paper we assume that the first two j =  1, 2 components depend 
upon only one coordinate, y + const �9 x at t = 0: 

D j = l + d j e x p [ z j ( y + # x ) + & t ] ,  7j= zj#, j = 1 , 2  (1.3') 
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In the x, y plane only four asymptotic shock limits exist, depending on the 
l" 1T 2 sign: 

2 3 

1 - 1 ~ ' 2 > 0 :  nOi'  ~'?3~'-~-F/Oi-~n3i' Z2i= 2 I~ji' Z~= ~ nji 
j = o  j = o  

% % < 0 :  noi+nji+n3i, noi+nji, j = l ,  2 
(1.5) 

In Appendix A it is shown that if the four asymptotic shock limits (1.4) are 
positive, then we can choose the dj such that the Ng are positive. 

In Sections 2 and 3 we prove (see Appendices B and C for the details) 
that in a space of five arbitrary parameters, from which we reconstruct all 
the noi, nji, Tj, 7j, & parameters of the N~, there exist subdomains where the 
16 Z'~ (corresponding to r 1 % > 0 )  shock limits are positive. If we define 
zj=nj4/nj3, j = l ,  2, P=z~z2, and S=Zl+Z2 ,  the chosen five arbitrary 
parameters are 

(P,S, noi>O, i =  1, 2, 3) (1.6) 

The mathematical structure of these shock limits, allowing an analytical 
positivity study, is provided by a factorization property. All 2"i are linear 
combinations of the four noi with P, S-dependent coefficients. Further, they 
can be written as second-degree no3 polynomials: 

rio3 ~ ' i  ---- Q i ( r to3  - -  rtol Ak)(no3 - -  r to2Ak, )  (1.7) 

with P, S-dependent coefficients (see Tables I and II). For each Si we seek 
the no3 interval in which Si is positive and study the intersections of these 
12 intervals. Further, we must compare the roots of the s and we find that 
the intersection is not empty if the ratio nm/no2 has either a P, S-dependent 
lower or upper bound. All these calculations are tedious; however, 
invariance properties allow us to reduce the task with the possibility of 
finding X2 from ~71 and X4 from 2' 3. 

(i) From (1.1) we see that x ~  - x  is equivalent to N I ~ N 2 .  For 
Z1 ~ L'2 we change no~ ~ no2 and for j = 1, 2, nj~ ~ nj~ [or p ~ - #  from 
(1.3)]. For the exchange n31 r we have introduced a P, S-dependent 
parameter Y3 in the formalism and Y3 = n3x/n32 becomes l /y  3. 

(ii) For $ 3 ~ 2 "  4 we change no3*-+n04 and nj3~nj4. From the 
definition of zj, this is equivalent for j = 1, 2 to zj ~ 1/zj or P ~ 1/P and 
S ~  S/P. 

In Section 2 we choose the simplest case, # = 0  in (1.3'), or the j =  1, 2 
components only y dependent at t = 0. This is a pedagogical example for 
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which the mathematical machinery is tractable. The final result, 
Theorem 1, gives the explicit P, S domain, the nol/no2(P, S) upper bound, 
and the no3(P, S) interval for which all Zi are positive. The price to be paid 
for this relative simplicity is that the microreversibility parameter a is P, S 
dependent and a < 1/3, which excludes a = 1. 

In Section 3 we look at the more general case where the two first com- 
ponents are y +g(P, S)x dependent at t =  0. The mathematical analysis 
is more complicated than in Section 2, but we find positive solutions 
satisfying the microreversibility (a = 1). We give the expressions of the X~ 
in terms of the arbitrary parameters; however, for the positivity we restrict 
the study to the case S =  - 2 ( P +  1). In Theorems 2 and 3 we find two 
subdomains of the arbitrary parameter space in which all Xi are positive. 

In Section 4 we choose two examples satisfying Theorems 1 and 2, 
leading to Ni> 0, and construct their total masses M = ~  Ni. For both 
examples we study numerically the equidensity lines M = const at t = 0 and 
the relaxation curves Ni, M when the time is growing. For M the four 
asymptotic shock limits become 

mo=Znoi ,  Z~176  Z2 = Z Z 2, Z3 = Z X~ (1.8) 
i i i i 

leading to a physical structure more interesting than in one spatial coor- 
dinate. These shock limits represent plateaus in the spatial coordinate plane 
separated by the shock domain. We find the two highest plateaus in the 
upstream domain, while the two lowest belong to the downstream domain. 
We look at the possible ways to decrease equidensity lines to link the 
highest plateau to the lowest one. We find two different scenarios. First, the 
equidensity lines decrease continuously from the highest plateau, cross the 
shock domain, and spread out into the downstream domain. In the second 
scenario the upstream and downstream domains are completely isolated by 
the shock front. A bump is always present in the shock domain. Looking at 
the displacement of the equidensity lines when the time is varying, the 
second scenario can appear. It can happen that for intermediate times, 
populations of particles larger than at initial time or at equilibrium exist. 
Physically, this can be explained by a compression of particles, while 
mathematically we explain this effect by a shifting of the dj parameters in 
(Dj) to djexp(&t). We study also the movement of the shock when the 
time is growing. 
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2. M O D E L S  W I T H  T W O  S I M I L A R I T Y  C O M P O N E N T S  WITH 
ONLY A y SPATIAL DEPENDENCE 

We study the (2'+ 1)-dimensional solutions 

3 

Ni=noi+  ~ nJDj ,  D j = l + d j e x p ( z j y + T j x + p j t  ) 
j=l  (2.1) 

"~1 = ~)2 =0 ,  i =  1,..., 4 

The first two nj~/Dj, j = 1, 2, components are x independent. Our aim is to 
prove analytically that there exists a class of solutions Ni such that the 
asymptotic shock limits Z'~ 

2 3 

S~ = noi, Z2 = 2 l'lji' .~03 = no ~ + n3i, S3  = Z nj~ (2.2) 
j = 0  j = 0  

are positive. All details and proofs are given in Appendix B; here we quote 
only the main results. First we write down the expressions of the 
parameters of the solutions N~ as functions of five arbitrary parameters. 
Second, we determine the Si in terms of these arbitrary parameters. 
Finally, in the five-dimensional parameter space we find a subspace where 
the 22~ as well as "1~1~ 2 are positive. 

2.1. Solut ions N i (Appendices B.1, B.2) 

There exist 19 relations among the 23 parameters noi, nji, zj, pj, 73. 
However, since the microreversibility parameter a > 0 is not fixed, one 
supplementary parameter is left. The solutions depend upon five arbitrary 
parameters, from which we must express all the others. 

We follow the same method as for the previous construction of exact 
(1 +l)-dimensional  solutions. (3) For  each j t h  component we define a 
scaling parameter which is the ratio of two well-defined nji. It turns out 
that all the other ratios njk/nj~ are functions of these three scaling 
parameters. Further, one of these scaling parameters can be expressed as a 
function of the other two and we are left with only two of these scaling 
parameters. We obtain the n j,. as linear combinations of the four no~ with 
coefficients that are functions of the two remaining scaling parameters. 
Finally, the rj, pj, 73 are functions of the njg. We define two scaling 
parameters zj = nj3/nj4 and choose for the five arbitrary parameters 

( P = z l z z ,  S = z l  +z2;  noi, i =  1, 2, 3) (2.3) 

The microreversibility parameter a is P, S dependent, while no4 and all 
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other parameters belonging to the first two j =  l, 2 components depend 
upon the five arbitrary ones: 

a = 8 P / S ( S +  P + 1), no4=nmno2/ano3 (2.4) 

nj3 = 2{P[no3(1 + zj) + 2(nol + no2)/a] + no4(Zi + P)} 

x [ ( z j - z i ) ( z j - P ) ]  -~, i r  (2.5) 

nj4=zjnj3 , njl = n j 2 =  --2zjnj3/(1 +zj), j =  1, 2 (2.6) 

2"cjzj = (zj -- 1)[a(no3zj + no4 ) -t- 2zj(nol + no2)/(1 + zj)] 
(2.7) 

pj = -rjnj3/(nj~ + nj3 ), j = 1, 2 

For the third component we introduce a third scaling parameter Y3, which 
is S, P dependent: 

y3=n31/n32, (1 + y3)2 = 4(P + 1)y3/S 

y ? =  8 '=  1-2(1 +P)/s  

n32(P + 1 - S) = (P + 1 + S)(n02 + nol/Y3) + 2(no3P + n04)(1 + 1/y3) 

n33 = - - y 3 ( 1  -k- P)n32/P(1 + Y3), n31 -= y 3 n 3 2 ,  n34 = Pn33 (2.8) 

p3n33n34  = (n33 + n34)(n31 n32 - -  a n 3 3 n 3 4 ) / 2  

r3(n33 + n34) = / ) 3 ( / / 3 4  - -  n33 ) 

~3(n32 -I- n31 ) = p3(n32 -- n31) 

We have constructed a five-parameter family of Ni solutions. However, the 
physically acceptable solutions must have N~>0, and if r ~ % > 0 ,  it is 
sufficient that the 16 shock limits L'i given by (2.2) are positive. The four 
conditions noe> 0 are easily satisfied if we choose noi > 0 for i = 1, 2, 3 and 
P, S values such that a is positive in (2.4). 

2.2, Analytic Expressions for the ~; (Appendix B.3) 

First we remark that all the nit written down above are linear com- 
binations of the four noi, so that the same property holds for the 12 Z'i. 
Second, from the relation (2.4) for no4 we see that no3Z'e will be second- 
degree polynomials in no3 with coefficients that are functions of P, S, no~, 
and no2. However, there exist invariance properties: 

(i) For i =  1, 2 the quadratic relations are 

n o 3 S 1  = (21 (no3 - -  nol  A k ) ( n o 3  - -  no2Ak,) 
(2.9) 

no3 ~v'2 -=-- g22(n03 - -  nm-'~k,)(n03 - -  no2Ak) 
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with ~r Ak, and Ak, functions of P, S, and eventually of Y3. In this last 
case Ak = Ak(Y3 ~ l/y3). From the relations nil = nj2, j = 1, 2, n3ffn32 = Y3 
we deduce that 1 ~ 2 if both no1 ~ n02 and Y3 ~ l/y3. 

(ii) Similarly we can obtain 3 ~ 4 if we exchange both no3 ~ no4 and 
zj ~-~ 1/zj or e ~ 1/e, S ~ SIP. 

(iii) Are there relations between the Zi of the first family i =  1, 2 and 
those i =  3, 4 of the second one? As we show now, they share common 
roots no3 = nojA k or nojA k. The condition [see (B.32)] for a common Z~, 
Z 2 root is 

n o l ( l + P + S ) + 4 n o 4 = O  or no4 ~no~no2/ano3, no3/no2 = - S / 2 P = A 2  

(2.10) 

A2no2 being one zero of L'~, it is also a zero of Xz3 . F rom the 3 ~ 4  
symmetry in (ii), we deduce that no3/noa = - ( P  + S + 1)/4P = A1 is the 
common zero of X~, Z4 z. In the same way, with the symmetry 1 ~ 2 of (i), 
we find that no3=nolA2 is a zero common to S~, Z 2, while no2A~ is 
common to 2;~, X~. For  X ~ X O3 the possible root is 

no48(P+ 1 ) + n o ~ ( S + P +  1) S(1 + l/y3) = 0 

or 

noffno2 = 23 = - ( P  + 1)/P(1 + I/y3) (2.11) 

and is in fact the common root. With the symmetries 1 ~ 2 and 3 ~ 4, we 
deduce that nolA3 is a common zero of Z ~ Z~ nol-~4 is common to 
_;o3, So3; while no2A4 is common to Z ~ X ~ 

Finally, for each Xi family there exist only four different roots and this 
result simplifies the positivity study of the Xi. 

2.3. Suff icient Conditions So That All ~i Are Positive 
(Appendices B.4 and B.5 and Table I) 

In the five-dimensional parameter  space, the analytic determination of 
a subspace in which all the s are positive seems untractable. For  each of 
the 12 second-degree no3 polynomials, we must check both the sign of the 
coefficient of n23 and the location of the two roots nojAk or nojA k, and 
determine the intervals of no3 in which Xi > 0. Afterward we must check 
that the intersections of these 12 intervals are not empty. Fortunately, 
scaling parameters exist which simplify the discussion. Practically, the 
study of three parameters  will be important.  
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We introduce a new arbitrary parameter s, a function of both P and S, 
and which replaces S. We also define new functions deduced with the 
factorization of trivial factors: 

s= -S/(P+ 1), Bi=AiP/(P+ 1), Bi=AiP/(P+ 1) 
(2.12) 

rZo3 =no3P/(P+ 1), Zrino3 = Z'i(s + 1) 

In Table I the 12 22~ are written down as second-degree *io3 polynomials 
with roots nojBk or nofl~k. The important simplification is that only s is 

present in the B~ and Bk and in the coefficients of ~3 (multiplied eventually 
by trivial P factors). 

Let us write a, zj, and Y3 with the s parameter: 

a = s - l ( s - 1 ) - 1 8 p / ( P + l )  2, y 3 = y f  = - ( l + 2 / s ) + _ ( 2 / s ) ( s + l )  1/2 

2z+ = s ' ( P +  1 ) ( - 1  T- c5'/2), 6 =  1 -4P/[s(P+ 1)] 2 (2.13) 

If we assume P > O and, for instance, s > l, then the signs of Z~, ~o3, and B~ 
are those of S~, no3, and A~. Further, a is positive, and Y3 and zj are real. In 
Appendix B.4 we prove the following theorem. 

Table I. ~ri= flo3~.i/(s + 1 ) f o r  the Models of S e c t i o n  2 

Z~ = 4(tio3 - no1 B1 )(rio3 -- no2B2) 
Z22 = 4(ti03 --  n01 B2)(~qo3 -- no2B1) 

e~  = ( e +  1) P-I(s-- 1)(~q03 --nolB2)(fi03 -- no2B2) 

-r42 = (P + 1 )(~o3 - n01B1)(*~o3 - no2 B1) 2s 
,~03 = (~q03 --  no1 B3 )(rio3 --  r/02 B4) 2( 1 -b Y3 ) 

~203 = (~03 --  F/Ol B4)(~03 --  ,v/02 J~3) 2(1 + l / y 3 )  

eo3 = ( p +  1) P 1(/~03 - -  n01B3)(~q03 - - / q o l B 3 ) ( s  - l )  

Z4 ~ = (P  + 1 )(no3 - nol B4)(ri03 - no2B4)( --  2) 

~ = (ti03 --  nol Bs)(tio3 - -no2 B6) 2(3  + Y3) 

~ 3  = (rio 3 _ rtol B6)(/~o3 _ gto2/~5) 2(3 + 1 /y3)  

Z~ = (no3 - noi Bs)(rto3 - no2 B s ) (  P + 1) P l(s- 3) 
~43 = (/i03 --  nol B6)(n03 --no2B6)(P+ 1) 2 ( s  --  l )  

S= -s(P+ 1), go3=no3P/(e+ 1), yf  = - ( 1  +2/s)+_(s+ I) ~/z (2/s) 

Bx = ( s -  1)/4, B2 =s/2, B3 = - ( 1  + y3) -1, B 4 = (S- -  1) y j 2 ( l  + Y3) 

B5 = ( s -  1)/(3 + Y3) = 2 B 6 ( s -  1 ) / ( s -  3) 

B 6 = [ 2 s  + (s --  ] ) y 3 J / 2 ( 3  + Y3) = [ --  2y3 + s(1 4- y 3 ) ] / 4 ( 1  4- Y3) 

B3 = B3 Y3, B4 = B4/Y3, B5 = (s -- 1) y3/(3y3 4- 1 ) 

B 6 =  Is(1 + y 3 ) -  2] /4(1 +Y3)  
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T h e o r e m  1. The "~i a re  positive if the following sufficient con- 
ditions on the arbitrary parameters are satisfied: 

s > 3 ,  P > 0 ,  Y = Y 3 ,  O<nol<no2B6/Bl,  

nol  B 3 < no3 P/(P + 1 ) < no1 B1 
(2.14) 

with 4 B l = s - 1 ,  B3= - 1 / ( 1 + y 3 ) ,  B6= - - [2 s+ ( s - -1 ) y3J /2 (3+ y3)  
positive. We explain this result. Z 3 and Z "2, with eight positive roots, are 
positive if ri03 is smaller than their lowest root, which is nolB1 if nol/no2 < 
B6/B 1 < 1. With Z ~ remaining positive inside the interval (nolB3, no2B4) , 
the inequality B1 < B 4 leads to (2.14). 

The Zi are really asymptotic Ni lilts if T1~2 > 0. Since r~z2 is (Appen- 
dix B.5) the product of two quadratic ~o3 polynomials with two positive 
roots, it remains positive for vi03 smaller than these roots. This is true for 
r~o3 in the (2.14) interval. In conclusion, Theorem 1 leads to a class of 
positive Ni. 

What are the possible a values in (2.14)? From (2.13) we see that 
a < 1/3, so that the a = 1 value for the microreversibility is not possible. 

In Section 4 we fully discuss a numerical example with a small a value 
and d i parameters chosen so that N~ > 0 in the whole x, y plane. Here, 
as illustration, for a solution satisfying (2.14) with a=0 .3  we report 
the numerical values for both the parameters of the Ni and the Xi. 
Starting with s=3.12 (or S = - 6 . 8 6 ) ,  P = l . 2 ,  and no2=l ,  we find 
a=0.3 ,  Z+=0.18,  z _ = - 6 . 6 8 ,  y3  = - 2 . 9 4 ,  nolsup=0.042, 0.515no~< 
6no3/11 < 0.53nol. Choosing further no1 = 32 x 10 2 and n03 = 31 x 10 -2, we 
obtain n j l = - l . 0 6  , -1.04, 9 x 1 0 - 5 ;  n i2=-1 .06 ,  1.04, - 3 x 1 0 - 3 ;  
nj3=0.45, 0.24, 8x  10-4; nj4= -3.02, -0.42, 10-4; z j=  1.95, 1.91, 
58x10-3 ;  p j=  1.45, -1.33, 0.64; ?~=0, 0, -0.13, j = 1 , 2 , 3 ;  22~=10 2, 
0.97, 2.8, 10-2; S ~ = 3 x 10 -2, 1, 3 x 10 -2, 3.3; L'~ = 10 -2, 0.98, 2.9, 10 -2, 
i =  1,2, 3,4. 

3. M O D E L S  W I T H  T W O  S I M I L A R I T Y  C O M P O N E N T S  
DEPENDENT SPATIALLY ON ONLY y + p x  

We study the (2 + 1)-dimensional solutions 

3 

Ni = noi + ~., nji/Dj 
j=l  (3.1) 

D j = l + d j e x p ( r j y + ? j x + p J ) ,  Vj= #rj, j = l , 2  

The first two j = 1, 2 components are spatially dependent on only y + #x at 
t = 0 and we recover the previous model for # = 0. Our aim is still to prove 
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analytically that there exists a class of solutions N~ such that the 16 
asymptotic shock limits S~ defined in (2.2) are positive. We have one more 
parameter, #; however, we assume that the microreversibility a=  1 is 
satisfied, so that we still have five arbitrary parameters from which we 
deduce all others. 

First we define the same five arbitrary parameters as in Section 2: 

(zj=nj4/nj3, j = l , 2 - + P = z l z 2 ,  S = Z l - l - z 2 ; n o i  , i =  1, 2, 3) (3.2) 

The connection between the first two components and the third one is still 
established with Y3 = n3ffn32. However, Y3 is given by a cubic equation; 
this leads to a more complicated formalism for the analytic expression of 
the solutions in terms of the arbitrary parameters P and S. 

Second, we write down the 16 Z" i quantities in terms of the arbitrary 
parameters. Due to the Y3 cubic equation and the complication of the for- 
malism, we must keep in the expressions intermediate parameters/t(P, S), 
y3(P, S), ~3i(P, S )=  n3i/n32, i =  1, 2. As in Section 2, the X~ can be written 
down as linear combinations of the four no, A remarkable property arises, 
which unfortunately has only been verified in each case, but has not been 
deduced on a fundamental basis. We find always that the coefficient of no4 
is the product of the two corresponding ones for no1 and no2. This allows to 
write no3.~wi a s  a second-degree no3 polynomial 

if aaj = alj~2j 

n03,Si = Y2i(n03 -f- 0:ijnm)(n03 + ~2jn03) (3.3) 

with f2 i and c~ only P, S dependent. Fortunately, invariance properties 
1 ~.  2 and 3 ~ 4 allow us to establish this factorization property only for 
i =  1 and 3 and to deduce it for i =  2 and 4. The factorization property (3.3) 
simplifies the study of the positivity of the Z" i. We look at the signs of both 
the coefficient of no23 and of the roots noj multiplied by P, S functions. From 
this we can decouple the P, S parameters from the noj ones. The study of 
the intersections of the different no3 intervals in which the X,. are positive is 
mainly reduced to a study of P, S-dependent functions. 

Third, we seek a domain of the arbitrary parameter space in which 
2"i > 0. The analytic expressions of ~t, Y3, ~3~ as functions of P, S are very 
complicated in general, so we choose a simplified case occurring for 
S =  - 2 ( P +  1), 0 < P <  1. 
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3.1. Solutions Ni (Appendices C.1 and C.2) 

There exist 20 relations among the 25 parameters noi, nj~, ~j, 7j, &, 
which must be determined from the five (P, S, noi, i =  1, 2, 3) arbitrary 
ones. # is only P, S dependent, while//04 is only not dependent: 

#2 = ( 1 + P + S)2/( 1 + P - S )  2 - 8P( 1 + P + S ) / S (  1 + P - S) 2, 

/104 = n01 t'/02/n03 
(3.4) 

We notice that we have two square-root determinations for #. 
We discuss first the reconstruction of the j =  1, 2 components. We 

introduce the intermediate parameters ~j/= nj jnj3 ,  

fijl = 2 z j C j ,  

C j = # -  1 - ( # +  1)zj, 

n j2 = 2 z j E j  

Ej = c / u  --, - ~ )  
(3.5) 

which are functions of It(P, S), P, and S. We obtain the nj3 parameter: 

F/j3 = ( - -  nO3 Zj - -  F/04 Jl- F/O1/'lj2 AI- F/02/~jl )/(Zj -- l"ljl ?l j2 ) (3.6) 

from which we can obtain all the others, nj4 = zjnj3, nji= aj~n~3, i = 1, 2, and 
rj, 7j, and & [Eq. (C.4)]. For the third component j = 3, the intermediate 
parameters Y3 and fi3i are linked by the relations 

h33/2 = (/~ -- 1 )lCx C2 - (I t + 1 ) Y31E1E 2 

fi34/2P = - ( I t  + 1 ) I f  1 C 2 -~ (1 - # )  Y 3 1 E 1 E  2 

(/~33 + ?~34) Y3 '[- n33/~34(1 q- Y3) = 0 

(3.7) 

with coefficients that are functions of #(P, S), P, and S. We notice that the 
elimination of fi3i in (3.7) leads to a cubic equation for Y3, which is written 
down in Eq. (C.6). We find for n32 an expression which allows us to deter- 
mine all n3i as well as %, 73, and P3 [see Eqs. (C.7) and (C.8): 

n32 = (no3 ti34 + no4fi33 -- nox -- no2 Y3)/(Y3 -- n33t~34) (3.8) 

3.2. Analytic Expressions of the ]E, (Appendix C.3 and Table II) 

In Appendix C the study is performed for the three families ~'03, • 2  
and _r3. Here, as illustration, we make explicit the simplest case S,. ~ for 
which the factorization property is trivial. Further, we show briefly how the 
invariance properties allow one to find Z" 2 and s 
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We start with Z ~ =nox + y3n32, which from (3.8) can be written as a 
linear combination of the noi: 

S ~ = s176 + no4fi33/fi34 -- no2 Y3/n34 - -  nol /~33/Y3) 
(3.9) 

if2103 = y3]~34/(Y3 - -  ~331~34) 

Since the coefficient of no4 is the product of those of no1 and no2, with (3.4) 
for/704 we can rewrite 

n03 •03 _-- if2 i~ - -  n o l  A 3 ) ( n 0 3  - -  n o 2 A 4 )  , 
(3.10) 

A 4 = .F3/~q34, A 3 = ~q33/Y3 

The coefficient if2103 o f  n23 is only P, S dependent and the ratio of the two 
roots is nol/no2 multiplied by A3/A4, still a P, S factor. For  the other X ~ 
this factorization structure is also trivial to establish (Section C.31); it 
becomes tedious [(C.32), (C.33)] for 27/2 and X/3. 

We report briefly the main results established in Appendix C.3. The 
quadratic polynomials no3S i are of the type 

no3 ,~i  = ff2i (no3 - -  n01 A k)(no3 - -  no2Ak. ) (3.11 ) 

with Ak, Ak,, and s functions of P and S and of the intermediate 
parameters Y3, t'i3i, and p. For  the transformations 1 ~ 2 and 3 ~ 4 we 
consider the intermediate parameters as independent variables, although they 
are also P, S dependent. 

3.2.1.  E x c h a n g e  1 ~ 2. For  this transform we must change both 
noi '~n02 and nil ~--~ nj2. Then (3.11) becomes 

no3 271 ~ no3 X2 = ff22(n03 - nol  -d~:,)(no3 - -  no2 A/~) 
(3.11') 

f22 = (21(njl +--' nj2), 2~=Ak(njl*--,nj2), Ak . . . . .  

Of course in this transformation, the factorization remains. 
First, we consider X~ with 1212 and the roots proportional to A1,  A 2 

[written down in Eq. (C.18) and in Table II].  From (3.5) the transform 
nil ~-,nj: is equivalent to C j ~ E j  or # ~ - / ~ .  Consequently, we find 
g2~ = f2~(/~ --. - p )  and A~ = AI( # ~ --#). 

Second, for 2703 written down in (3.10) we exchange n31+-*n32 or 
equivalently for the intermediate parameters Y3 "-* Y31  and n3i/Y3 ~ Yl3i. 
Consequently, for 2 "03 we obtain 0 ~  ~o3 and the roots -4k. 

Third, for S 3, with 0 3 and the roots As and A6 written down in 
Eq. (C.23) and in Table II for the change Z'l 3 ~ 2"3 we must perform 

~ --1/, Y3 -'* Y31, and n3i/Y3 --4 ~3i" As an illustration, let us start with the 
root no~A5 with As = (ff2~ '[-Alff22)/~~3, which becomes the root no2A5 

822/52/3-4-25 
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of 2723. In the transformation O13 = f2~ + 0 03 becomes 023 = 022 + f2 ~ 
A2 ~'-2 2 --+ A2(222, while ~t'203//~34 "+ ~e'~203 y3//~34. 

3.2.2.  E x c h a n g e  3 ~ 4 .  We must change both no3~--',no4 = 
nolno2/no3 and nj3*-+nj4. We define ( . ) r =  (nj3 ~---~ nj4) and start with (3.11) 
for S3, 

H03~" 3 "+ F/03,~4 = (03AkA#,)  T [no3 --  noi/(Ak,) T] [no3 --  rlo2/(Ak) T] (3.1 1") 

and we see that the factorization property holds for 274 if it exists for $3. 

Table II. Z;= T.~Qi/no3 for the Models of Section 3 

S l  2 = (no3 --  nox A l)(no3 - no2A2) 

27~ = (no3 - no1 42)(no3 - no2A2) 

z~013 = (nO3 - -  n o 1 A 3 ) ( / ' / 0 3  - -  r / o 2 A 4 )  

Z ~ = (no3 - nolA3)(no3 -- no2A3) 

Z~ = (no3 - n o l A s ) ( n o 3 -  nozA6)  

Z~ = (no3 - nolAs)(no3 - noz4s) 

G e n e r a l  case  X2i:Aa = - 2 1 a / 2 3 a ,  A z = -)~za/231 

4 k = A k ( / t ~  - -p ) ,  2 1 1 = 4 P ( 1  + P - S ) / S  

)-2a = 2 ( 4 P  - $2)E1 E2/C 1 C2 

231 = [ # ( P  + 1 - S)  + P + S + 1 ] ( S -  2 P )  + 4P(P - 1 ) 

Ca C2 = Ex E2(I~ ~ - # )  

E a E 2  = 2(1 + P + S ) [ S ( P +  1 ) - 4 P ] / S ( 1  + P - S ) - 2 # ( P -  1) 

~ 2  = / 2 2 ( 1  - P2)(1 + P --  S)2/2,  ~ 2  = 231 

0 2 = I2~(# --+ - # ) ,  O~ = - ) q a ,  O ]  = 2P(S 2 - 4 P )  

X ~  =/~33 = 4 3 '  A4/Y3 = 1//~34 = 4 4  

- [2a/Y3 - 04/n34 = n34~r~3 /Y3 a 0 3  = ~ 3 4 / ( Y 3  - -  n 3 3 / ~ 3 4 )  - -  03 __ 03 - - 03 

( 0  3 y3+A2921)/Oa Z~:As=(~Q03 bAI~--2~)/,.Q~, A 6  = 03 2 3 

"15 = 03 ~ 2 3 = (~c24 + A2~Q2) /~c~2  ( 0  3 + A I , Q 2 ) / ~ 2 2 ,  4 6  03 - 2 3 

g2~ = 0 2 + 0 03 (i  = 1, 2, 4),  0 3 = r733 s'2 ~ + f2~ 

# 2  = (1 + P + S)2/(1  + P - S )  2 - 8P(1  + P + S)/S(1 + e - S) 2 

P a r t i c u l a r  case  S = - 2 ( P  + 1 ), p = (1 - P ) / 3 ( 1  + P )  

27~: Aa = 1/2P, A2 = 2/P, A2 = 2/Q = 1/41 

I2~ = 6P2/(P + 2 ) ( 2 P  + 1 ) = 2Pf2~ 

g2~ = 2(1 + P + p2) / (p  + 2 ) ( 2 P  + 1 ) = 122/2p 

_r/o3 : idem 
,S~: As = (QZ + y2 + ay3 - 2y3)/(2Q + y3)(PQ - y3) 

A6 = (2Q + y3) / (Pa  - y3), 4 6  = (2y3 + Q)/Q(Y3 - e o ) ,  4s = AsA6/46 
I'2~ = f 2 3 ( p  + 2 ) ( 2 P  + 1 )(Q2 + Qy3 + y]) /3P(QP - y3) 

~ = 2Q + y3,  ~'2~ = - 2 y 3  - Q 

f2~, i = 3, 4:  idem 

-r2z = (no3 - n o 1 2 z ) ( n o 3 -  no2Ai) 

~e4~ = ( n o 3 - n ~ l A l ) ( n o 3 -  no24~)  
--03 __ X z - (no3 n o 1 4 4 ) ( n o 3 - n 0 2 4 3 )  

•03 = (no3 _ no 1 44)(n03 _ no2A4) 

.~32 = (no3 - no t46) (n03  - noz45 )  

Z ]  = (no3 - no1 46)(n03 - rlo2A6) 
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First, for 2 ,03 we have /733 ~,-'+/~34; the roots nolA 3 and no2A 3 become 
the roots no2/(A3)T=rlo2A4 and r/Ol/(A3)T---r/olA4 of ~,03 [see (C.11)]. 
Similarly, tt(2 ~ " ' 3  An) T= O303//34//,/33-2 - = 0 0 3 .  

Second, for 2:32 we have P ~ 1/P, S ~ S/P, and ~j~ = njjnj3 ~ nj1/nj4 = 
~jl/Z/ or, from (3.5), zj--* 1/zj, #--+ -I~. 

Consequently, for X32 ~ Z'42 in (3.11") the transform (.)T is ( P ~  1/P, 
S--' S/P, ! ~  -I~), leading to 1/(A2)T=A1 and 1/(.42)r=.4~ and the two 
roots n01.~ 2 and n02A2 of S32 become the roots n02.41 and nolA 1 of Z'3 a. 
Finally, the coefficient f2~ of 22~ is transformed into (1232A2,42)r= 
O /AlY l for 

Third, for the transform Z ' ~ S 4 3  we must consider (fi33~fi34, 
P -~ I/P, S ~ S/P, # ~ -I.t). Similarly as above (with tedious calculations), 
one can show that the two roots noIA 5 and n02.~ 5 of Z "3 become the two 
roots no2/(As)T=no2A6 and nm/(As)T=nm716 of Z "3. 

In conclusion, for the 12 Z'i we only have 12 roots: no~A2k+ ~, no2A2k, 
no2A2k+l, nolA2/r k =  0, 1, 2; six of them are obtained by transformations 
of the other six. 

We restrict the study to a simplified case: S = - 2 ( P + l )  and 
# =: ( 1 -  P)/3(1 + P) for the square-root determination of/~2. 

3.3. Sufficient Conditions for ~ri>0 and S=  - 2 ( P + 1 ) ,  
3p= (1 - P ) / ( 1  +P)  (Appendix C.4) 

The analytic expressions of the 12 f2 i and of the 12 roots are written 
down in Table II as functions of P and of the intermediate parameters and 
#, which are in fact also only P dependent. Further, in order to be able to 
discuss analytically the determination of the cubic Y3 equation, it is 
convenient to introduce another parameter Q which is also P dependent: 

Q = 3 P / ( I + P + P 2 ) ,  y3+Q2+y3(y~+Q)(4+Q)=O 
(3.12) 

3P~33=Q(2P+ l )+ y3(P+2), 3~34=Q(P+2)+ y3(2P+ l) 

We choose the following determinations of P, Q, and Y3: 

0 < P < I ,  0 < Q < I ,  - l < y 3 < 0  (3.13) 

The interest of the introduction of the parameter Q(P) is that we can 
replace the cubic Y3 equation (not convenient for an analytic discussion of 
its solution as function of a parameter) by two quadratic ones P(Q) and 
Q(y3) in (3.12), choosing the square-root determinations compatible 
wit]h (3.13): 

Pfl = 1 - (1 - fl2)1/2, fl = 20/(3 - 0 )  
(3.14) 

Q~= -2y3[-1 - ( 1  - c~)l/2], ~=4(1  +y3)/(4+y3) 
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For the positivity study we will have to compare the different roots propor- 
tional to Ak, Ak. Then the representations (3.14) give useful information 
about the signs of algebraic expressions involving the intermediate 
parameters, P and Q, while zj = z+ = - P -  1 +_ (1 + P + p2)1/2. 

Starting with (3.13) for Q, P, y3, and noi> 0, i =  1, 2, 3, we find no4>0 
and two subdomains of (3.2) in which the 221 are positive. All s (23, Ak, 
4~, k = 1, 2, 5, 6, are positive, so it follows that 222 and 22~ are positive for 
no3 outside the eight intervals constitued by the roots. We can choose either 
no3 smaller than the smallest root or larger than the largest one. Further, 
the roots proportional to no1 or no2 can be ordered if the ratio nol/no2 has a 
P-dependent lower or upper bound. For Z ~ the two roots proportional to 
A3, 44, and s ~ i 1 ,  3, are positive, while -~3, A4, and 0 ~ , i = 2 ,  4, 
are negative. Only for A3<no3/no1<44 can the positivity be satisfied. 
Choosing for 222 and Z 3 the no3 interval smaller (larger) than the smallest 
(largest) root, then this root must be larger (smaller) than n01A3 (n01A4). 
An analytic positivity proof requires a great deal of algebraic calculation. 
We must order the Ak, Ak (20 lemmas) and intermediate results are found: 
/~33 < 0, n34 > 0 ,  r/33rt34-- y3 > 0  , y 3 +  Q > 0 ,  2y3+ Q < o  .... We have proved 
the following theorem ~3) for no3 smaller (larger) than the 222, X~ roots. 

T h e o r e m  2. Sufficient conditions for all L'~ > 0 are 

0 < P <  1 - - * ( - 1  < y 3 < 0  ) , O<nol/no2<P Q , A3 < no3/F/01 < A6 

A3=~133/Y3, A6=(2y3+Q)/Q(y3-PQ) ,  Q ( I + P + P 2 ) = 3 P  

T h e o r e m  :3. Sufficient conditions for all X~ > 0 are 

0 < P < I ,  ( - l < y 3 < 0 ) ,  nol/noz>Q/P , sup(42, As)<no3/nol<A 4 

A2 = 2/Q, As = (QZ + y2 + Qy3 - 2y3)/(2Q + y3) (QP-  y3), A4 = 1/~34 

It is shown in Appendix C.4 that ~1r2, having two positive roots, 
remains positive for no3 outside the interval constituted by these roots. This 
is the case for the no3 intervals of Theorems 2 and 3. These theorems lead 
to positive L" i and N~. 

In Section 4 we discuss a numerical example of Theorem 2, while here 
we present the Ni parameers and Ak, Ak, and 22~ numerical values for an 
example of Theorem 3. 

First, we start with P - -  3/5, leading to S =  -3.2,  z+ = -0.2,  z = - 3 ;  
Q=45/49 ,  y 3 = - 0 . 8 8 ,  ~ 3 3 = - 1 . 5 ,  ri34=0.15, /z=1/12; A~=5/6,  
At=45/98 ,  A2=10/3,  42=98/45 ,  A3=0.17,  A 4 = - 5 . 9 ,  A 3 = - 0 . 1 5 ,  
44=6.71 ,  A5=2.53,  A6=0.666, 45=2.62 ,  46=0.643;  03=0 .5 ,  0.5, 
0.3, 0.8, g2~ --0.17, 1, --0.02, i = 1 , 2 , 3 , 4 ;  nol/no2>75/49, 
2.53 < no3/nol > 6.71. 
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Second, we choose noz = 1, no, = 2.224, and find 5.62 < ;~o3 < 14.9. 
Third, we choose no3-8.73 and find no4=0.25, no3,z+=l.23, 

no3,z - =3.7; ~/jl =-3.84, 3.22, -0.08, n j2=-2 .97 ,  4.5, 0.09, n j3=-6 .72 ,  
-1.25, -0.014, nj4= 1.34, 3.75, 0.014, z j= -9.1, -10.2, 0.54, 7j= -0.76, 
-0.85, -0.08, pj=6.1,  -5 .1 ,  -0.054, j = 1 , 2 , 3 ;  X~=l .6 ,  2.5, 0.7, 5.3, 
2 03 = 2.1, 1.1, 8.7, 0.27, S~ = 1.5, 2.6, 0.74, 5.4, i =  1, 2, 3, 4. 

4. PHYSICAL D ISCUSSION 

We consider the square-velocity model (the discussion is similar for 
the cubic one) with the total mass M =  ~24 Ni rewritten as 

3 4 4 
M= mo + Z mJDj, m 0 = Z  n0i, mj= E mji 

1 1 1 

Dj= 1 +djexp(~j f+pj ) ,  j =  1, 2 (4.1) 

D 3 --- 1 + d3 exp(z3 )7 + `73x + P3 t) 

We have introduced a new coordinate .9 = y + #x for the models of Sec- 
tion 3, while for the spatial coordinates in D3 we put r3 y + 73x = r3 )5 + `73x 
(~73 = 7 3 - / ~ 3 ) .  We discuss the solutions with 35 and x as spatial coor- 
dinates. For the model of Section 2, # = 0, 9 = y, '73 = 73. 

The previous positivity conditions Z'~ > 0 for Ni become for M 

2 3 
m o > 0 ,  ~ 2 = 2 m i > 0 ,  ~'~ : mo -t- m3 > 0, Z 3 : 2 m i > 0  (4.2) 

0 0 

if q:~r 2 >0. We notice that (4.2) satisfied alone are insufficient conditions 
for S i > 0 .  

4.11. Some General Results 

We first discuss the equidensity lines M = const at to = 0 and next the 
movement of the shock front and the relaxation toward equilibrium. 

4.1.1. Equidensity Lines M ( x ,  (t, t = 0 ) = e o n s t .  We look, in 
the x, f plane, at the asymptotic domains associated with the limiting M 
values. Depending upon whether ~ l f  (we recall v l~=>0) and ~335+`73 x 
are positive or negative, we find the four asymptotic shock limits of (4.2): 
(i) ~ '1-9>0,  ~3)~-1-`73x:>0, M--*mo, (ii)"~1-9>0, "C3-9"AV`73X'(0 , M ~ X  ~ 
(iii) z , -9<0,  r335+`73x>0, M ~ X  z, ( iv)~, -9<0,  %37+`73x<0, M ~ X  ~. 
They define domains limited by equidensity lines parallel to y = 0 and 
z335+`73x=0. There exist four different possibilities (see Fig. la), 
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Fig. 1. (a) Different locations of the shock plateaus. (b )The  shock front decreases 
continuously. (c) The shock front has a bump. 
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depending upon whether the positive % 35 + '/3x axis is in the first, second, 
third, or fourth quadrant of the x, 35 plane. In the case of one spatial coor- 
dinate, we only have two shock limits: one in the upstream domain and the 
other in the downstream domain. Here we can have, for instance, two 
asymptotic shock plateaus in the upstream domain and two others in the 
downstream domain. The definitions (4.2) are insufficient to order these 
limits and determine which ones are in the upstream or in the downstream 
domain. 

We consider a shock in a strip parallel to the x axis and look at the 
possible ways for the equidensity lines to link the asymptotic plateaus of 
both up- and downstream domains. We will say that the upstream domain 
contains the two highest plateaus, while the downstream domain contains 
the two lowest. We are interested in the possibility that the domain around 
the shock has bumps higher than the highest asymptotic plateau. If mi > 0 
for all i, then Sup M in the whole 35, x plane is the highest plateau ,3 .  If 
some mi is negative, then the arbitrary constants dj in Dj [not present in 
(4.2)] are important. Among the possible scenarios, we choose two, which 
will be illustrated numerically later. We choose two opposite situations, 
with such bumps never or always present. 

For the first scenario we assume 

ml + m2 > m3 > 0 --+ mo < X ~ < X 2 < ,~3 (4.3) 

and the r335+~3x>0 axis in the third x, 35 quadrant. We choose the dj 
such that in the upstream the lowest plateau Z '2 surrounds entirely the 
highest one X 3. In Fig. lb we represent the path for decreasing equidensity 
lines. Two profiles at x = Xo fixed (negative and positive) show that the 
shock front decreases continuously from one upstream plateau to another 
downstream one. No bump is present. However, (4.3) is compatible with 
opposite signs for m 1 and m 2, for instance, ml >0,  m2 <0.  Choosing d2 
large and dl small, we can obtain equidensity lines with M larger than Z "3, 
so that bumps can appear. For instance, we can change the initial time 
to = 0 to to 4:0 and substitute d2 exp(topz) instead of d2 (this possibility will 
be illustrated later in Fig. 2). 

For the second scenario we assume in Fig. lc 

m l + m z + m 3 > O  , m3 < 0--* Z'~ <m0 <Z'3 < X 2 (4.4) 

The ~3 35 + ~73x > 0 axis in the fourth quadrant and the dj are chosen such 
that in the upstream domain the lowest plateau is an hollow entirely 
surrounded by the highest one. It is an isolated basin from which, following 
decreasing equidensity lines, we cannot go directly to the shock front. 
Further, there is no path connecting directly up- and downstreams plateaus 



916 Cornille 

through the shock front. In a strip parallel to the x axis, including the 
shock, sup M(x,  ~) for x fixed and )7 varying is larger than the highest 
plateau S 2. A bump is always present, close to the shock front with 
equidensity lines higher than S 2, as is illustrated with two profiles at Xo 
fixed positive and negative. Other scenarios are possible; for instance, ma 
and m 2 can be of opposite sign in (4.4) (m~ + m2 > 0) and we can choose dl 
and d2 such that in some intervals, sup M for x fixed is lower than X 2. 

4.1.2. Movement  of the Shock Front and Relaxation 
toward Equilibrium. With the initial time t o arbitrary and without 
significance, we are interested in large t values and finite spatial coordinates 
x, )5 values. Among different possibilities, let us choose P3 > 0 and pi > 0 for 
one of the two i = 1, 2 values, while & < 0 for the other j r i. In a first crude 
approximation for large time we find 

m ~- m o + mill1 + dj exp(~j )5 -  h&[ t)] (4.5) 

The shock front for large time has moved from )7 _~ 0 to y-~ tl&l/rj. There 
remain practically two asymptotic plateaus mo, mo+mj ,  the last one 
becoming the Maxwellian equilibrium state. We remark that mo + mj > 0 is 
not a consequence of the positivity conditions (4.2) at t = 0 .  With the 
Boltzmann equation carrying through the p0sitivity, this means that for the 
present situations (see examples in Figs. 2 and 3), necessarily m 0 + mj > 0. 

These results represent the dominant effects, but less important ones 
occur. First, what happens for the equidensity lines r 3 )5 +~3 x =co n s t  
(present in the asymptotic plateaus)? From D3 we see that they are trans- 
lated to - p 3 t .  From the different signs of the Pi, we see that the plateaus 
2; 3, S 2, S ~ move toward the equilibrium state mo + mj and mo. At inter- 
mediate times the ith component, proportional to m~, gives a contribution 
to the shock front for movement toward ) 5 = - t p j v t  in a direction 
opposite to the dominant j t h  component, proportional to mj. 

4.2. An Explicit Example wi th  a ~ l  

We discuss an example of the formalism of Section 2 with Dj = 1 + dj 
exp(~jy + &t),  j =  1, 2, or )7= y, 73 = 73- We choose arbitrary parameters 
satisfying Theorem 1: We start with P = 0 . 5 ,  S =  -15 ,  no1 = 10 -3, no2 = 1, 
no3 = 6.7 x 10 -3, leading to a = 19.7 x 10 -3, zl = - 3 3  x 10 -3, z z = -14.9,  
y3 = -1.8,  no4=7.5; vj--1.22, 1.22, -0.054,  7j-=0, 0, -0 .54 ,  & =  1.07, 
-1 .14 ,  0.16, n i l = - 1 ,  1, 0.74, n j 2 = - 1 ,  1, -0 .4 ,  nj3=0.47, 14.5, 2.6, 
nj4 = - 7 ,  -4 .85,  1.3, j =  1, 2, 3. We notice that the sound speed of the two 
first components y + cjt and of the third one x + Y%/73 + c3t are such that 
]ci] < 1. For  the total mass M we deduce mo = 8.5, ml = -8.55, rn 2 = 16.04, 
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m 3 =4.I9;  X3= 20, 222= 16, X~ 12.7. For the arbitrary dj parameters we 
choose d l =  d2 = 10, d 3 = 10 2 

4.2.1. Equidensity Lines M = c o n s t  at t = 0  (Fig. 2a). These 
correspond to the scenario of Fig. lb with a shock in a strip around the x 
axis. Decreasing equidensity lines connect he asymptotic plateaus 20 --* 16, 
and then they cross the shock front and spread out in the downstream 
toward 12.7 and finally 8.5. The profiles perpendicular to the x axis 
decrease continuously from the upstream toward the downstream domain. 
We observe the equidensity lines parallel to r3 Y + 73 X= O. 

4.2.2. Shock and Equidensity Lines Moving with t, 
Equilibrium State (Fig. 2b-2e) .  For large t and finite x, y only the 
second component remains: M ~  8.5+ 16/[-1 +d2 e x p ( y - t ) ] ;  the shock is 
shifted from y = 0  to y=t, relaxing toward the equilibrium state 
mo + m2 ~-24.5, while for y -  t positive and large, M - m  0 = 8.5. From the 
expression of D3 we observe that the equidensity lines parallel to 
7 3 x + % y = c o n s t  are translated to cons t -0 .16 t .  Consequently, both 
plateaus 20 and 12.7 join the others, 16 and 8.5. 

Looking at the dj values for t = to large but fixed, we observe that 
dl exp(t0) is large compared to d2 e x p ( -  to), d 3 exp(0.16t0). Consequently, 
the negative term, proportional to ml becomes less important and we can 
observe a bump higher than 20 or even higher that the equilibrium value 
24.5. This means that in the space, populations of particles larger than at 
the initial time or at infinite time can appear. 

Figures 2b and 2c present results for Ni and M for a small y interval 
around the shock, along the lines x =  10 and x = - y - 1 0 .  We observe 
both the displacement of the shock front and, at intermediate time, the 
presence of a bump larger than the equilibrium state. A plot of M for some 
x, y fixed and t varying emphasizes the presence of this bump at inter- 
mediate times. We also notice the property, sometimes overlooked, that the 
positivity of the macroscopic total mass M is not sufficient to ensure the 
positivity of the Ni. For a small negative time t = -1.25,  both Ni and M 
remain positive, but, for instance, for t = - 2 ,  M is still positive, while N2 
becomes negative around y = 0. 

In order to follow the displacement of the asymptotic plateaus, 
Fig. 2d-2f show results for M with a large y interval. We choose the con- 
stant line x = 10 and the two others z3 y + 73(x +_ 10) = 0, which are parallel 
to one of the two directions of the asymptotic plateaus. In Fig. 2d for t = 20 
we observe both that the central plateau with hedge 20 becomes thinner 
with an enhancement at 28 and of course the moving of the shock. The 
compression of the central plateau can explain physically the appearance of 
the bump, while mathematically, as we have seen this is due to 
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Fig. 2. (a) The M equidensity lines at t = 0  decrease continuously from the highest plateau 
to the smallest one. Lines parallel to x = 0 and to ~3 Y + ?3x = 0 (a = 19.7 • 10-3). (b) A bump 
appears at intermediate times. Movement of the shock front ( x =  10, a = 19.7 x 10-3). (c) At 
t = - 2 ,  M is still positive, but 5/2 is negative (x + y + 10=0).  (d) All the asymptotic plateaus 
as well as the bump and the equilibrium state are present. The bump appears and disappears 
( a = 1 9 . 7 x  i0 -3, x = 0 ) .  (e, f ) T h e  bump is present. Pictures similar to a shock with one 
special coordinate. (e) z3 y + 7s(x + 10) = 0, (f) z3 y + y3(x - 10) = 0. 
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d 1 --* d I exp(20pl). At t =  50 the bump has disappeared and we observe the 
formation of the Maxwellian plateau 24.5. At t = 90, we see four asymptotic 
plateaus; the smallest, 8.5, appears due to the displacement of the 
273 y--~-~23 x = const line (discussion above). In Figs. 2e and 2f the two lines 
are parallel to 73x + P3 t = const, so that, as in a one-dimensional shock, we 
observe only two asymptotic shock limits. However, here both constant 
limits vary with t. We notice that the bump appears on both lines; 
however, on one line it is higher than the Maxwellian, but not on the other. 

4.3. An Explicit Example with a = l  

We discuss an explicit example for the formalism of Section 3 for 
which the Dj = 1 + dj exp(r jy  + 7ix + &t) are rewritten: 

D j = l + d j e x p ( ~ j ) 5 + & t ) ,  j = l ,  2 

D3=  1 +d3exp( z3 )5+~3x+p3 t )  

with f3 = 73-/~r3 and )5 = y +/~x as a new spatial coordinate. We discuss 
an example with the arbitrary parameters satisfying Theorem 2. 

We start with a =  1, P = 0 . 1 ,  S =  -2.2,  no1 = 10 9, no2 = 1, 

no3=1 .23x10-9 ,  leading to /~=9/33, Q=10/37 ,  z l = - 4 . 6 4 x 1 0 - 2 ,  
z2 = -2.15, y3=  -0.187, no4=0.56; r j=4.72,  1.97, -0.393,  7j=/~rl , /~z 2, 
0.19, & =  -4.3,  0.72, 0.13, nil = 1.02, =0.17, 0.07, nj2 = 1.02, -0 .17 ,  -0 .37 ,  
nj3 = 7.37, 0.08, 0.85, F/j4 = -0.34,  -0 .17 ,  -0 .042,  j =  1, 2, 3. We notice that 
the sound speed of the first two components y + I~x + cfl and that of the 
third one x + 73/73 y + c3 t are such that I c,I < 1. For the total mass M we 
deduce mo= 1.558, m1=8.6,  m2= -1.44,  m 3= -0.26, Z "2=8.717, 
L'~ 1.297, L'3=8.456, while for arbitrary dj we choose dl = d 2 =  10 3, 

d3 = 10 - 2 .  

4.3.1. Equidensity Lines M(~,x,t=O)=const (Fig. 3a).  
These correspond to the scenario presented in Fig. lc with a shock in a 
strip near the x axis. For  the present choice of the dj, inside the shock 
domain, sup M for x fixed and )5 varying occurs at )5 _~ -2 .5  and varies 
slowly from 9.66 at x ~ - ~  to 9.92 when x ~ oe. The ridge stays prac- 
tically always at 9.66 for x < 0, rising slowly and continuously when x > 0. 
All along the shock front a bump exists which isolates both the basin Z "3 
and the highest upstream asymptotic plateau - r2. The profiles perpendicular 
to the x axis exhibit this bump. 

In order to test the importance of the di in the shock front we seek the 
largest and the smallest possible bumps. Due to m l > 0, m 2 < 0, the most 
important one is obtained with d2 large and dl small. For  d3= 106, 
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d I = d 2 = 10-5 we find that sup M in the shock-strip lies between 9.9 and 
10.16 (for any dj values the difference is equal to m3). On the contrary for 
d 2 = d 3 = 10-4 and dl = 10 4, we find a sup M in the strip between Z ~ + 5, 
I 2 +  e s ~ 10 5 with,values close to the asymptotic upstream plateaus. In 
that equidensity lines can cross the shock domain and the bump practically 
disappears. 

4.3.2. Shock and Equidensity Lines Moving with t, 
Equilibrium State (Fig. 3b-3d). Due to p2>0, p3>0, pl<0, for 
large t and finite x, y only the first component remains: M ~  1.6 + 8.6/ 
{ l + d l e x p [ 4 . 7 ( ) 7 - t ] } .  The shock is moving from 37=0 to 37=t; the 
equilibrium state (t ~ ~ ) has the value m0 + ml = 9.02, while when )7 - t is 
large and positive we must observe the plateau 16. These are the dominant 
effects. However, for not too large time, the second component 

-1 .45/{1+dzexp[0.7(237+t)]  } moves in the opposite direction. The 
third component determines the displacement of the lines parallel to 
z3 37+ ~3x=const ,  which are translated to const -1.3t .  In both upstream 
and downstream domains we must observe the displacement of the 
plateaus I3~--V 2 and mo+ m3 ~ mo. Finally, we notice that the change 

/ 

15 1.297 1.3 1.55 

Ino§ 10 

/ I / 15579 j -.0 30 - 2 0 _ j  _ - - !  10 , • 
I . ,  I , = 

2 "  / 8.72 
3 " -10 

~-2s t ~ / Emi 

(a) 

Fig. 3. (a) The M equidensity lines at t = 0 .  A bump is present in the shock domain. Lines 
parallel to x = 0  and to r 3 ) ~ + ~ 3 x = 0  ( a =  1). (b, c) Movement of the shock. (b) For 9 = 0 ,  
the curves rise continuously when t is growing. (c) For x = 0 and 137[ ~ oo we recover the t = 0 
shock limits. ( d ) M  for r3(37--10)+~Tsx=0. Bump at t = 0 ,  movement of the shock; 
asymptotic L "3 and I ~ limits replaced by L "2 and mo (a = 1). 
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Fig.  3 (continued) 

d j ~  dj exp(pJ0)  gives, for finite x, 37 values, a larger contribution for the 
positive first component  m~D~ 1 and a smaller one for the oher negative, 
components. 

Figures 3b and 3c present both Ni and M relaxation curves for x, -9 
along two lines. The first one, -9 = 0, at the bot tom of the shock, is parallel 
to the shock front, while the other, x = 0, is perpendicular to it. Along 
39 = 0 we observe, when t is growing, a continuous rising of the curves up 
to equilibrium. The difference between the two Ix]-~ oo limits, which is 
equal to ms = 0 at t = 0, falls progressively and disappears at equilibrium. 
Notice that these limits are t dependent, so that for t fixed we never recover 
the t = 0 limits. Such a situation cannot arise in one spatial dimension. 
Along the profile x = 0, perpendicular to the shock, we observe the moving 
of the shock, the small bump at the top of the shock front, and the 
spreading of the equilibrium state. Contrary to the previous case, for t fixed 
and ]-9l sufficiently large, we recover the asymptotic liits of the initial time. 

Figure 3d presents a curve along a line ~3(-9 - 10) + ~sx = 0 for a large 
x (or -9) interval, parallel to one direction of the asymptotic plateaus. We 
observe the bump at t = 0, the moving of the shock, and the appearance of 
the equilibrium state. The two asymptotic ].91 ~ oo limits X 3 and m 0 + m 3  
at t = 0 are progressively replaced by X 2 and mo. This is explained by the 
displacement - p 3  t < 0 of the equidensity lines ~3 9 + 73x = const toward 
the x < 0 half-plane. 
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5. C O N C L U S I O N  

From the present work we know that positive (2+ 1)-dimensional 
shock waves exist for two discrete Boltzmann models. For the analytical 
positivity proof we were obliged to understand the mathematical structure 
of the asymptotic shock limits, which are physically relevant quantities. As 
a consequence of the laborious analytical calculation of Appendix C, we 
can now construct numerically positive shock waves for which the 
positivity has not been analytically proved. For the models of Section 3, 
giving up the restriction S-- - 2 ( P +  1) (leading to Theorems 2 and 3), we 
have constructed positive solutions. ~ 

Taking advantage of the analytical results presented here, I am 
currently investigating two other classes of solutions: semiperiodic ones 
with the first two components complex conjugate, and solutions with six 
asymptotic shock limits. 

A P P E N D I X  A. SUFF IC IENT A S Y M P T O T I C  POSIT IV ITY 
C O N D I T I O N S  

Theorem.  Let 

3 

M = m o + ~ mjDj 1 Dj 
1 

d s > 0, y real, j = 1, 2, 

If one of the two conditions 

= 1 + die ~y, 

0<D~-~< 1 

2 3 

rlz~ >0, mo>0, mo+m3>0 ,  ~ m j > 0 ,  ~ m j > 0  (A.1) 
0 0 

z1%<0, mo+mj+m3>O,  m o + m j > 0 ,  j = l , 2  (A.2) 

is satisfied, then M > 0 provided that the dj satisfy sufficient conditions. 
We remark that if m3>0  (or <0), then M > m o  (or mo+m3) 

+ Z~ mjDTl, we must prove the following lemma. 

Lemma.  If P = Po + Z~ PjDj ~ and if one of the two conditions 

% % > 0 ,  po>0,  p o + P l + P 2 > O  

or (A.1 I) 

~1z2<0, po+ps>O, j = l , 2  

is satisfied, then P > 0 provided that the dj satisfy sufficient conditions. 

822/52/3-4-26 
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(i) Case z1r If p j>0 (or pj<0), j = l ,  2, then P>Po (or 
po+Pa+p2)u positive. It remains p2<0 ,  and we choose p l < 0 ,  p2>0 ,  
and assume zj > 0. We have 

P = l-Po + P~ + P2 + (Po + p2)ul  + (Po + Pi )u2 + poul u2]/D1D2, 

Only Po + P~ can be negative. If so, we find 

u2(poul+pl)>O if dl>[pl/po[e ~ly~ 

Po + Pl q'- P2 + (Pl q- po)U2 > 0 

uj=dje ~jy (A.3) 

and Y > - Y o ,  y o > 0  

if d2<l(Po+pl+p2)/ (po+Pl) le  -~2y~ and Y<~-Yo (A.4) 

with Yo fixed but arbitrary. Then P > 0 for all y real values. 

(ii) Case z1~2<0 and we assume vl >0,  % < 0 .  If po<0 ,  then p, >0 ,  
p2>0,  po+p~+p2>O, only poUlU2<O in (A.3), and we find 

ul(Po+P2+pou2)>O if d2<l(P2+Po)/Po[ and y~>0 
(A.5) 

u2(PoWPl+poUl)>O if dI<I(Po+Pl)/PoJ and y~<0 

If Po > 0, only Po + Pl -t-P2 can be negative in (A.3). If so, one pj (or both) 
is negative, 

(po+P2)( l+u~)+p~>O if di>[(po+P2) /p l [ -1  

(po+Pl ) ( l+u2)+p2>O if d2>[(po+Pl) /p2[-1 

APPENDIX B. 

and y~>0 

and y~<0 

(A.6) 

Finally, P is positive in both cases for all y values. 

MODEL WITH THE FIRST TWO COMPONENTS 
DEPENDING ONLY ON y 

B.1. Relations 

The solutions 

3 
N i = noi d- ~,, n j iB  j- 1 i = 1 ..... 4 

j= l  

Dj=l+d jexp ( z j y+p j t ) ,  j = l ,  2 

D3 = 1 + d 3 exp(z3 y + p3 t -b 73x) 
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with 23 parameters no~, nj~, pj, zj, 7j substituted into the nonlinear discrete 
model Eq. (1.1) lead to 19 relations 

njl ~Hj2, j= 1, 2, nolnoe=ano3n04, a(n14n23 +n13n24)=2n21n11 

(B.1) 

t ' l j lpj  = t'lj3(fl j + "~j) = ?Ij4('C j - -  p j )  = allj3?lj4 - -  H21 

= --a(no3nj4 + no4nj3) + nil n~l (B.2) 

H31(P3 q- ~3) = H32(P3 --  ]Y3) = --/133(P3 "1- "f3) = iv/34(Z3 --  P3) 

= aH33H34 --/'/31/'/32 

= --a(no3H34 q-/'/04/'/33) -~-/'/01//32 + no2n31 (B .3)  

a(r/j4r/33 q-//j3 rt34) = r/jl (rt32 -k- n31 ) (B.4) 

We have put n~l=no~+no2. Relations (B.1), (B.2) are for the first two 
components j =  1, 2, while (B.3), (B.4) are those of the third one. Since a is 
not fixed, we have five free parameters. 

B.2. Solutions 

We define two new parameters z j=  nj4/nj3 , j =  1, 2, and write P =  z1z 2 
and S = zl + z2. We choose (P, S, no1, no2, no3) as  the arbitrary parameters. 

B.2.1. Parameters for the First Two Components j = l ,  2. 
For simplicity we introduce intermediate parameters nj1 = nj1/nj3 and from 
(B.1), (B.2) deduce 

fijl = -2zJ (1  +zs), a = 8 P / [ S ( S + P +  1)] (B.5) 

nj3(azj - n-~l) = -a(no3 zj + no4) + fisl n~ = zjZzs/(1 - zj) (B.6) 

whence all nji, zj, p j, and a are known: 

n j 3 = 2 { P [ n o 3 ( l + z j ) + 2 n ~ a  1 ] + n o 4 ( z i + P ) } / ( z j - z ~ ) ( z j - P ) ,  i e j  

ns4 = zjnj3, nil = nj2 = -2zjnj3/(1 + zj) (B.7) 

2zjzj = (zj - 1 )[a(no3zj + no4) + 2zjn~/(1 + zj)] 
(B.8) 

p j  = - - z j n j 3 / ( n j l  q- nj3 ) 

B.2.2. Parameters  for  t h e  Thi rd  C o m p o n e n t .  We introduce 
other intermediate parameters Y3 =/731///32 and f13i=n3i/r132,  i =  3, 4, and 
obtain from (B.3), (B.4) their expressions as functions of the free 
parameters P, S. 
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y 2 + 2 y 3 [ 1 - 2 ( 1  +P)/S]  + 1 =0---+ y f  = - B ' _  (B ' 2 -  1) '/2 
(B.9) 

B ' =  1 - 2 ( 1 + P ) / S  

~33 = -Y3( 1 + P)/P(1 + Y3) = - S ( 1  + y3)/4P, t734 = P~33 
(B.IO) 

(/~33 -t- /~34) Y3 + /~33/~34( 1 + Y3) = 0 

From (B.3), n32 can be written down with the intermediate parameters: 

//32(aph23 - -  Y3) = --an33(n03 P +/ /04)  "1- nol + Y3 rio2 (B.1 1 ) 

whence all the parameters n3i , /93, 7:3, 73 of the third component are 
known: 

n32(P + 1 - S ) / ( e  + 1 + S )  = no2 + hollY3 + a(P + 1 )(no3 + non/P)/(1 + Y3), 

//31 = Y3//32 

n33(P+ 1 - S ) / 2 ( P +  l )=no3+no4P l + ( p +  1 + S) 

• (no1 + no2 y3/2P(1 + Y3) (B.12) 

= (n33 + n34)(n31 n32 - an33n34) 

n34 = P//33, P3 2//33//34 = (n33 + n34)(n31 n32 --  an33 r/34) 

"~3(F/33 -'}- n34) = p3(//34 -- n33), '~3(//32 3t-//31 ) =-- p3(n32 --//31 ) 

with Y3 and a written in (B.5)-(B.9) as functions of P, S. 

B.3. De te rmina t ion  of  the Asympto t ic  Quant i t ies  ~r i 

We want to express the 12 quantities Z21 ----X'~2Z--,j=O nji, S ~ noi -4- r/3i, 
S3 3 n = Z j = o  j~ as functions of the free parameters P, S, no,, no2 and no3. 
Invariance properties allow us to calculate explicitly only six of them. 

B.3.1. Invariance Propert ies,  From the relations nj l=nj2,  
j = 1, 2, //31/n32 = Y3 we deduce 

~V'I ~ '+z~ 2 with the transform (nol~-+n02, y3,--,y3 1) (B.13) 

From the relations nj3/ / / j4  = Z j, j = 1, 2, we get 

~V'34---~V" 4 with the transform (no3*--',no4, P*-.~P-1, S*--*SP 1) (B.14) 

However, the no3~W i a re  written as polynomials in//o3 of the second degree 
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with coefficients that  are functions of P, S. F r o m  no4 = no~no2/an03 we see 
that (B.14) is equivalent to 

/'/03 X3 = ~"2 3(/'/03 -4-/101A 13)(/'/03 q-//02A23) ~/'/03 ~Y'4 

- -  T T T - f 2  A13A23a(no3+no1/aA23)(no3+no2Ar3a) (B.14') 

where f2~ means t2(P ~ P 1, S - ,  S P -  1 ), A r 2 . . . .  
For  the calculated Si  we use the following method:  Since all the nji are 

linear combinat ions  of the noi, the same proper ty  holds for the Xi. One  can 
write 

no4 = no1 no2 S(S + P + 1 )/SPno3 (B.15) 

and then n03~Y'i is a second-degree polynomial  in 1/o3. It  turns out that  the 
roots  are noj, j = 1, 2, multiplied by functions of P and S only. Further ,  all 
the roots  are real. 

B.3 .2 .  ~-.a. F r o m  (B.7) we obtain the linear noi relations for Z "2 
and Z'2: 

(P + 1 - S)(nll + n21) = 4Pno3 + 4no4 + 2Sn~1 

(P + 1 - S)Z'~ = 4Pno3 + 4no4 + 2So2 + (P  + 1 + S)nol 

2 

( S - P - l )  ~ n j 3 = 2 n o 4 S / P + 2 ( P + l ) n o 3 + n ~ l S ( S + P +  1) 
j = l  

(S - P - 1 )$2 = (S + P + l )(no3 if- nfl S/2P) + 2no4S/P 

while (B.15) leads to the quadrat ic  relations and the transforms 
' Z~2 (B . I~ ) - (B .14 )  to 2, $2 :  

no3  ~ = f2~(n03 - nm A 1)(no3 - -  nOR A 2) 

no3 Z'~ = g2~(no3 -- no~ A2)(no3 - no2A l) (B.t6)  

f2~=f2~=4P/(P+ l - S ) ,  A 1=  - ( P +  1 +S)/4P, A2 = - S / 2 P =  1/aA1 

no3 $2 = f22(no3 - nm A2)(no3 - nozA2) 

no3 X 2 = [22(no3 - no1 A1 )(no3 - -  no2 A1 ) (B. 17) 

f 2 2 = ( l + P + S ) / ( S - 1 - P ) ,  f 2 ] = Z S / P ( S - 1 - P )  

B . 3 . 3 .  ~-~a. Adding to n32 , n33 [see (B.12)] either no2 or  no3 , we get 
03 the linear relations for Z; 2 or 3, 
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( P  -k- 1 - S ) S  ~ = 8 ( P  -a t- 1)(/7o3P -f-/7o4)/3(1 -k- Y3) 

+ (P + 1 + S)nol/y 3 + 2(P + 1)noz 

(S - P - 1 )s176 + P - 1 ) = no3 + 2no4(P + 1)/P(P + S + 1) 

+ ( P +  1)(nol +no2Y3)/P( i + Y3) 

(B.15), the identity ( l + y 3 ) 2 = y 3 4 ( P + l ) / S ,  and the transforms while 
(B.13)-(B.14') applied to ~'7 3, i = 2 ,  3, give ~Y~7 3, i =  1 and 4: 

F/03S103 = 073(/'/03 - -  nol  A3)(n03 - -  no2A4)  

/'/03 S03 = ~22~ - -  A 4 n o l  )(no3 - -~3 no2) 

~r'273 = 2P(1 + y3)/(1 + P -  S) 

03__ 03 1 ~r~73 ~'~2 --~t~l (Y3 ~ y f l )  = Y 3  
(B.18) 

A3 = - ( P  + 1)/P(1 + Y3) 

713 = As(Y3 -+ Y3 1) = A3 Y3 

A 4 -~- - -  ( P  "~- S + I ) y3/2P( 1 + Y3) 

lz~ 4 = A n ( y  3 ~ y 3  1 ) = A 4 / y  3 

n 0 3 S  03 = 073(/703 - -  1701 A3)(n03 - / , /02  ~,~3) 

no3 S~ = 003(/703 -- nol-~4)(n03 -- no2 A4) (B. 19) 

~o3 = (e + s + 1 ) / ( s -  e - 1 ), 0 03 = 2 e ( e  + 1 ) / ( s -  e -  ~) 

B.3.4. ~'~. We need other Y3 identities: 

(3 + y3) 2 = 4 [2  + y3(1 + P+ s) /s]  (B.9') 

S(S+ 3 P +  3) = [ S +  2 ( P +  1)/(1 + y3)]  [S  + 2 ( P +  1)y3/(1 + Y3)] 

To the linear noi relations X~, i = 1, 3, of Section B.3.2 we add, respectively, 
n31 and /732: 

( e +  1 - S)S~ = 2P(3 + y3)no3 q- 2(3 + ya)no4 

+ [ 2 S +  ( P +  1 + S ) y 3 ] n o 2 + 2 ( P + S +  1)noi 

2 n o 4 ( S + P + l )  I + P + S  
( S - P -  1)S~=no3(S + 3P + 3)-~ + 

P 2P 

X[nol / 2P+2' (X_t 2(P-t- 1) Y3"]] 
tS+l---+-~y3) +n~ 1+ Y3 i /  
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With (B.15)-(B.9')  we find the quadrat ic  relations and with the transforms 
(B.13)-(B.14')  deduce Z "3, S43: 

no3 Z;3 = (2~(no3 - no1 A 5)(no3 - nozA6) 

no3 $ 3  = ~"23(rt03 - -  n o l - ~ 6 ) ( n 0 3  - -  no2-~5) 

- A s  = ( P +  S +  1)/P(3 + Y3) 

- A  6 = [ 2 S +  y 3 ( P +  1 + S)]/2P(3 + Y3) (B.20) 

.~5= As(y3--* y3 1) 

A6= A6(Y3 ---~ y3  1) 

1231=2P(3+y3)/(P+l-S) ,  (23 = (2~(y3 --+ y 3  t ) 

no3S~ = f2~(no3 - nolAs)(no3 - noz-As) 

no3 Z3 = (23(no3 - nol,46)(no3 - nozA6) (B.21) 

(2] = (3 + 3P + S ) / ( S -  e - 1), 0 3 = 2P(S + P + 1 )/(S - P - 1 ) 

B.4. Suf f ic ient  Posit ivi ty Condit ions for the Zi 

We define a scaling parameter  S = - s ( P  + t ), and 

/~03 =no3P/(P+ 1), Ai= (P+ 1)B~/P, 2~= (P+ 1)B~/P, 

~ i  = /~03Si(S 'q  - 1) 

The above relations for r/o3~E'i become 

-~e = g2i(P + 1 ) P-1(rio3 - B~inol)(rio3 -- Bzinoz ) 

where the roots  B~ and B2~ are obviously 
(B.16)-(B.21) as written down in Table  I. 

kernma 1. Let 

If 

(B.22) 

(B.23) 

the Bi and Bi deduced from 

B~=(s -1 ) /4 ,  B2 = s/2, B 3 =  - ( 1  + y3) -~ 

B 4 = ( s - 1 ) y 3 / 2 ( l +  y3), B s = ( s - 1 ) / ( 3 +  y 3 ) = 2 ( s - l ) B 6 / ( s - 3 )  

B 6 = [ 2 s +  ( s -  1) y3]/2(3 + Y 3 ) =  [ - 2 y 3  +s (1  + y3)] /4(1 + Y3) 

B3 =" B3 Y3, B4 = B4/Y3 

B s = ( s - 1 ) y 3 / ( 3 y 3 + l ) ,  B 6 = [ s ( l + y 3 ) - 2 ] / 4 ( l + y 3 )  

s > 3 :  y 3 = Y 3 = - { l + 2 [ l + ( s W 1 ) ~ / 2 ] / s } )  (B.24) 
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then the following propert ies hold: 

(i) y 3 + l < 0 < y 3 + 3 ,  B i > 0 ,  i=1 , . . . , 6  

B 5 > 0 ,  /~6>0,  J~3 < 0, B4 -( 0, s + y 3 ( s - - 2 ) > O  

(ii) B6 < B1 < J~5, BI "( B6 < B5 

(iii) B1 < B2, B3 < B1 < B4 

Proo[s. (i) y 3 + l < O i s o b v i o u s ; ( y 3 + 3 ) s / 2 = s - l - ( s + l ) l / 2 > O i s  
equivalent to s ( s -  3) > 0 and 

- 2y3 + s(1 + Y3) = (2/s)[2 + (2 - s)(s + 1) 1/2 ] < (2/s)[2 - (s + 1) 1/2 ] ~< 0 

Consequent ly  all Bi, B5, J~6 are positive, while/~3, 04 are negative. 

(ii) - 1 + B6/B1 = (Y3 - 1)/(1 + Y3)(1 - s )  < 0 

-- 1 + Bs/B1 = (Y3 -- 1 )/(3y 3 -+- 1) > 0 

--1 + B5//~6 = (s-+- 1)/(s--  3) > 0 

Also note the relations 

2B1 = 06 nt-/~6 ~- B4 + ~/~4 

B3 + 03 = - 1  ~ - 1  + 96/B1 = 1 - B6/B 1 > 0 

(iii) B1/B2 = 1/2 - 1/2s < 1/2 

-- 1 + B1/B 3 = (s + 1)1/2 [-s - 1 -- (s + 1 )1/2]/2s > 0 

01/94 = 1/2 + 1/2y3 < 1/2 

T h e o r e m  1. All the 22; are positive if the following sufficient 
condit ions are satisfied: 

s > 3 ,  P > 0 ,  y 3 = Y 3 ,  O < b m < n o 2 B 6 / B 1  

no1 B3 </~o3 =/703 P / ( P  + 1 ) < nol B1 
(B.25) 

Proofs.  For  27~. All the coefficients of ti23 as well as the roots  nokBj, 
j, k = 1, 2, j ~ k are positive. It is sufficient for S,. 2 > 0 that  ~03 be less than 
the inf of the roots. F rom the lemma no1 < no206/01 < no2 and B1 < 02. The 
smallest roo t  is no1B 1 and S~ 2 > 0 if r~o3 < no1B1. 

Fo r  S ~ Fo r  Z;2 ~ the coefficient of no3 is positive and the two roots  
propor t iona l  to B 3 and B 4 are negative. _to3> 0 for ~03 > 0. For  ,~r'103 the 
coefficient of ~o23 is negative and the two roots are positive. For  the 
positivity, applying the lemma, it is sufficient that  n m B  3 < n03 < no2B4. For  
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s the coefficient of/i023 is positive, one root is positive, and the other is 
negative. For S~ 0 then ~o3 > no1 B3. For s ~ the coefficient of rio23 is 
negative, with one root positive and the other negative; for positivity it is 
sufficient that ho3<nozB 4. Due to B3<B 1 < B  4 we see that both Z "2 and 
S ~ are positive with (B.25). 

For X 2. All four coefficients of ti~3 are positive and the four roots 
no~Bs, nolB6, nozB6, and no2J~s are positive. For positivity it is sufficient 
that ~o3 be less than the smallest root. From the lemma and the hypothesis 
(B~25), noiB 1 is smaller than all roots and/73 > 0  for t7o3 <nolB~. In con- 
clusion, (B.25) is sufficient for the positivity of all Si. Finally, we notice 
that zj = z+ = (S-T-X/A )/2 are real and negative for s > 3 and P > 0 because 
A = S  2 - 4 P > 0 a n d S = - s ( P + l ) < 0 ,  

2z+ = s ( P +  1 ) ( -1  T- x/6), 6 =  1 -4P[s(P+ 1 ) ]  - 2  (B.26) 

From l + z + = x + [ x  2 + ( P + l ) ( s - 1 ) ] l / 2  with x = l - s ( P + l ) / 2 < 0 ,  it 
follows that 1 + z +  >0,  while S <  -3 ,  z_ < -2 .  

B.5. C o n d i t i o n  T 1T 2 > 0 

The sign of "tit 2 is given [see (B.8)] by the product of two quadratic 
polynomials in no3 

Zlz2n23/aZ(P+ 1) = 3-11 ~ 2 ,  Jii=n2o3+2no3:t/(1 Jf-zi)q-fl /zi  
(B.27) 

c~ = n~/a, /~a = no1 no2, ao~ 2 > 4fl 

The two roots n -= of the polynomial J,. are real and have opposite signs 03, z 
(flzi<0). Then v l r 2 > 0  if, for instance, 0<no3<inf(no3,z~), where the 
positive roots are 

no3,z• = -c~/(1 +z+_)+x/A+ >0,  A+ = [~/(1 +z+_)]2-fl/z (B.28) 

First we show that no3,z+ is the smallest root and second that z l r2>O 
for (B.25). 

Lemma 2. If P > 0 ,  s > 3  we find the inequalities: (i) A + > A  , 
(ii) A + + A  < c d A / ( I + P + S )  2,(iii) no3,z+<no3,z . 

Proofs. (i) We notice that x / ~ = z +  - z  and find 

+ - A _  =  ,2(s + 2)/(1 + P + s )  2] > 0 

because S + 2 < 0 ,  c~>0, /~>0. 
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(ii) We find 

A + + A _ - ~2A/(1 + P + S) 2 = 2(~ 2 - 4~/a)/(1 + P + S) < 0 

due to I + P + S = ( I + P ) ( 1 - s ) < O .  

(iii) First we have ( . ~ + - + - a / ~ - _ ) Z < A +  + A _  < ~ 2 3 / ( 1 + P + S )  2 
and taking the positive determination of the square roots we find 

~-+'+ - ~ - _  - e w/~/(1 + P + S ) < 0  or no3,z+<no3,z. 

For the solutions satisfying Theorem 1 [Eq. (B.25)], 

if no3 , z+>(P+l)nmB, /P  and 0<noa<no3,~+ then Z'IT2 > 0 

(B.29) 

Lernma 3. We define 
Q = Q , + Q 2  

Q1 = nolBl(P + 1)[aBI(P + 1)/P + 2/(1 + z + )] 

Q z = n o z [ Z  + 2 B l ( P + l ) / ( l + z + ) ]  

Then (B.29) is satisfied if Q < 0. 
We remark that 

QnoJaP = - A  + + [~/(1 + z+ ) + BI(P + 1)nol/P] 2 

with A+,~ , /?  given by (B.27)-(B.28) and if Q < 0  then . ~ + + >  
c~/( 1 + z + ) + Bl nm(P + 1 )/P or equivalently no3,z. > (P + 1 ) no1B1/P, 

I_emma 4. Q I > 0 ,  Q2<0.  We recall that l + z + > 0  [(B.26)] and 
obtain 2Q2(1 + z + ) ( P +  1)no2 = x - . v / 6 < 0  because x =  ( P -  1)s-1/ (P+ 1) 
and 6 = x 2 + 1 - s -2 > x 2. On the other hand, 

Q~/nol B , (P  + 1) = 2(P + 1)/s + (1 + ~/6)/(1 + z+ ) > 0 

Consequently, if in (B.25) no, = 0, then Q < 0 and this property holds for 
any no, if it holds for no, sup = no2B6/B1. 

I . e m m a  5. Q < 0 for noa = no, sup. From Lemma 3 we have 

2(1 + z +  )Q/no2(P+ 1)< Q =  ( P -  1)/(P + 1 ) - s  w/6 

+ 2B 6 [ 1 + a/6 + 2/s(P + 1 ) ] 

= Q, + Q2, Y3 = Y3- (B.30) 

0 = 1 + s -- (s + y3)[s(1 + w/~) + 2/(P + 1)] 

Q, = [ 2 - ( s +  1)m][1 / (P+ 1) + s(1 +~/6)/23/[s-(s+ 1) ' / 2 -  13 < 0  

Q2 = (s + 2)(x - w/-6) 
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with 

x = s/(s + 2) - 2 / s (P  + 1 ) 

f i = x  z + 4 [ ( s +  1) / (s+2)  2+ (s 2 - s - 2 ) / s 2 ( e +  1)(s+ 1)] 

Due to 5 - x 2 > 0, we find Q2 < 0, leading to 0 < 0 and Q < 0. 

T h e o r e m  l b i s .  Because the conditions (B.25) on the five arbitrary 
parameters lead to N; solutions with ~1 v2 > 0, then for these solutions their 
asymptotic positivity conditions Z'i > 0 are satisfied. 

APPENDIX  C, M O D E L S  WITH THE T W O  FIRST 
C O M P O N E N T S  DEPENDING ONLY ON y + p x  
AT t = 0  

C.1. Relations 

The solutions 
3 

N i = r t o i +  2 n j iDf  -I 
j= l  

D j = l + d j e x p ( z j y + T j x + & t ) ,  i=1,. . . ,4,  7 j=r j# ,  j = l ,  2 

with 26 parameters noi, nji, zj, yj, &, and # substituted into the nonlinear 
discrete m o d e l  Eq. (1.1) lead to 21 relations: a = 1 and 

7j = #zj ,  j = 1, 2, / ' / 04  = nol no2/r/o3 

//p3 F/m4 "1-/'/p4 F/m3 = npl/ ' /m2 "~ /'/p2 nml  ~ p r m 
(c.1) 

njl(Pj "Jr- ~)) = nj2(,oj -- 7j) = --nj3(Pj -t- 7:j) = nja(,r j -- pj) 

=n j3n j4 - -n j l n j2=nmnj2+no2n j l - - r lo3r t j n - -no4n j3  , j =  1, 2, 3 

C.2. Solut ions 

'We again define z j=njn/nj3 ,  j =  1, 2, P = z l z  2, S = z l  +z2, and choose 
(P, S, noj, j = 1, 2, 3) as the five arbitrary parameters from which we deduce 
the others. We note that no4 is obtained from (C.1). 

C.2.1. Parameters for the T w o  First Components  j = l ,  2. 
We again introduce intermediate parameters ~j i=n j i /np  and from (C.1) 
deduce 

~jl = 2 z J C j ,  Cj = # - 1 - (# + 1 )zj  
(C.2) 

~ j 2 = 2 z j E j ,  & =  C j ( - p )  = - # -  1 + ( # -  l)zj 
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with j =  1, 2. At this stage # is unknown; however, the compatibility 
relation p, m = 1, 2 in (C.1) becomes zl +z2 = n12h21 + ;7=h11, and leads to 
#(P, S) and so to ;Tji(P, S): 

#2 = (1 + P + S) / (1  + P - S )  2 - 8P(1 + P + S ) / S ( 1  + P -  S) 2 (C.3) 

The rhs of (C.3) must be positive and # has two possible determinations. 
From the definitions of zj and fiji we see that the nj; are known (as 
functions of the arbitrary parameters) once//j3 is obtained. From (C.1) and 
the n;i we get &, r j, and 7j: 

n j3 = M / ( z j  - ejl'~j2) 

M j  = --no3zj  --/'/04 + nol ~j2 § no2t~jl 
(C.4) 

nj4 = zjnj3,  n j; = ~j;nj3, i = 1, 2 

rj = (1 --  z j ) M j 2 z j ,  pj  = rj( 1 + z j ) / ( z j  - 1 ), ?j = ]#rj, j = 1, 2 

C.2.2. Parameters for the Third Component j = 3 .  We 
introduce intermediate parameters Y3 -----/'/31//'/32 and/~3i//232, i = 3, 4, and the 
p , m = l ,  3 and 2,3 (C.1) relations become f133Zj§  
leading to 

/'/33 = 2[(].2 - 1 ) / C  1 C 2 - (].2 -[- 1 ) y 3 / E l  E2] 

t~34 = - 2 P [ ( #  + 1 )/C1 C2 - (].2 - 1) y3 /E1E2]  (C.5) 

(/~33 § Y3 -b/~34/733(1 + Y3) = 0 

and a cubic Y3 equation 

(Y3 + 1){2(].2 2 - 1) [C1 C2 y 2 / g x  E2 § E 1 E 2 / C t  C2-[ - 4y3(# 2 + 1)} 

§ y ~ C 1 C 2 [ 1  - # §  (].2-t- 1)/P] § y 3 E 1 E 2 [ 1  + # §  (1 - # ) / P ]  = 0 

(C.6) 

In (C.6) all coefficients Cj, Ej, ].2 are known P, S functions; consequently, 
(C.6) gives Y3 and (C.5) ~3i also as P, S functions. Now the construction of 
the n3~ parameters is possible once n32 is obtained: 

//32 = (/203/~34 § //04/~33 - -  //01 - - / /02  Y3) / (Y3  --/~33 ~34) 
(C.7) 

F/31 ~ y3/232, //3i ~/~3iF/32, i = 1 , 2  

Finally, the same relations as in (B.12) hold for z3, 73, and/93 

2p3n33/234 = (//33 § - -  n33n34) 

773(n33 q"//34) : /93( /234 - -  /233) ( C . 8 )  

~)3(//32 § n31) =/93(/ /32 --/731) 
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C.3. Determination of the Asymptotic Quantities I [  i 

As in Appendix  B, two impor t an t  propert ies  exist: ( i ) t h e  roots  of 
S i = 0  are of the type no3 =noj  multipl ied by a function of P, S alone;  
(ii) there exist relations between the roots  cor responding  to different i 
values. 

At the linear noi level of the relat ions if an identity holds, then (i) holds 
at tlhe quadrat ic  no3 level of the relations:  

2 i = Oi(,v/03 q- ~ nojC~u(P, S )  
j :~3  

If O ~ l i O ~ 2 i  = 0(4i , then 

Zi  = Oi(no3 + %1 ~li)(n03 + no20~2i)/n03 (C.9) 

These identities are trivial for X 03 and difficult to prove  for Ze z and L "3. We 
begin with the trivial case. 

C.3.1. ~-03. F r o m  (C.7) we r emark  that  the Z i are linear com- 
binat ion of the noi; we quote  2 ~ 1 7 6  3 - no3' 

i = 1 :  

i = 2 :  

i = 3 :  

i = 4 :  

Since the coefficients of 
apply  (C.9) and find the 

H 0 3 S ?  3 

H y'03 
03 ~"~2 

n S ~ 03 3 

n03 2 0 3  

13  =/~33/Y3, 

0 0 3  -----/~34/(Y3 -- /~33/~34),  

H04 n33//~34 -- P/01/~34/Y3 - -  %2 Y3//~34 

/'/04~q33//~34 - n01//~34 -/'/02/~33 

f/O4 ti323/Y3 -- nO1/~33/Y3 -- F/02/~33 

no4 y3/i124 - -  F/01//~34 - -  no2 Y3/~34 

(c.10) 

no4 are the p roduc t  of those for no1 and %2, we 
quadra t ic  no3 polynomia ls  for 2ino3:  

= O~ -- A3nol)(no3 - A4n02 ) 

= O~ -- A4n01 )(no3 -- A3 no2) 

= O~ - A3nol)(n03 - ..~3 no2) 

= O~ -- A4nol)(n03 - A4n02) 

A4 = y3/ri34, A3 = h33, A4 = 1/Jq34, 

003 = y3003 ,  

(c.~1) 

O 0 3  __ .'Z g'103 0 0 3  0203 4 - -  t't34~'~2 ' = Y3/~34  

In fact, with the help of invar iance propert ies ,  it was sufficient to calculate 
Z ~ for i =  1 and 3, then deduce -r e for i = 2 and  4: 

(i) The  relations r/31/n32 = Y3 and r/3i/t/31 = rl3iY3 t with the exchange 
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1--~2 become n32/n31 = y 3  1 and n 3 i / n 3 2 = ~ 1 3 i  . Let us consider P, S and 
Y3,/~31 as independent variables and get 

,~73-"-'~z~03 with transform (no l~no2 ,  y3---~y3 1, fl3i/Y3-~n3i) (C.12) 

We easily verify with this transform that the roots nolA 3 and no2A 4 of ~,03 
become the roots nolA 4 and no2A 3 of ~.o3, while O ~ becomes 0 ~ 

(ii) For  the exchange 3 ~ 4 we see that ~3i~/~4i and deduce 

27~ ~ Z ~  with transform (/'/03 ~-'~ no4, ~3i+"+ /~4i) (C.13) 

For  instance, for S ~ the root no3 ----no1A 3 becomes no4 ----nol A3(/133 ~/~34) = 
noa/A4 or no3----rto2A 4 root of 274 ~ Similarly, the root /'/03 =-no2A3 for 273 
becomes  no4 = n02_~3(/~33 ~/~34) ~- n02/-~4 or  no3 = noliZ~4 root of 274" 

12.3.2. ~'2. We write down the useful formulas 

Cx C2 EIE2 = 16P(S + e + 1) ~ (S 2 - 4P)/$2(s- P -  1) 

(1 - It2)(1 + P -  s )  2 = - 4 s ( P  + 1) + 8P(1 + P + s ) / s  

E, E2 =2(1  + e +  S ) [ S ( P  + 1 ) -  4P ] /  (C.14) 

S(1 + P - S ) - 2 I t ( P -  1) 

C1 C2 = E1E2(It --* - I t )  

For simplicity we put ~ i  = 2k//23~ and rewrite (C.9): 

S i =  ~c2i(n03 q- ~ nok2ki/23i) 
k~3 

If  ,~1i,~2i = ,'],3i,'],4i, then  

S i = ~c2i In03 + (•1i/23i)/'101] [no3 --I- (22i/23i)no2]/no (C.15) 

a. s i =  1 ,2 .  First for L "2 we use the expression (C.2)-(C.4) for nil 
and obtain: 

~31 = [ i t ( P  + 1 - S) + S + P + 1 ] ( S  - 2P)  + 4 P ( P  - 1 ) 

241= [ i t (S-P-  1)+S+P+ 1](S-2)+4(1-P) 

211 = 4P(1 + P -  S) /S  (C.16) 

221 = 2 ( 4 P -  S2)E1E2/C1 C2 

0 2 = 223#(1 - Its)(1 + P -  s )  ~ 
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Now we prove the identity (C.15). We find 

211~,21 = ( E 1 E 2 )  2 ( S -  P -  1) 2 S/2(S+ P+ 1) 

In (C.14), EIE2 contains P, S terms and terms proportional to #. For the 
square, #2 becomes S, P dependent with (C.3), but terms proportional to # 
remain: 

)~11 )v,2/4 = (1 + P + S ) [ S ( P  2 + 1) - 4P(P + 1) + 8P2/S] 

-4P(P-1 )  2 + # ( 1 - P ) ( I + P - S ) [ S ( P + I ) - 4 P ]  (C.17) 

For the calculation of 231241/4, from (C.16) we still find terms proportional 
to /~ and others only S , P  dependent. For both terms we identify 
with (C.17). 

Second, for the exchange S~ ~ S 2 we remark from (C.2) that nil ~ nj: 
or Cj ~ Ej or # ~ -# .  We find finally in both cases 

n03 Z~ = g-2~(no3 - -  no1A 1 )(no3 - -  no2 A 2) 

no3-~ = (2~(no3 - no1A2)(no3 - no2A1) 
(c.18) 

A1 = --211/231, A2 = - 2 2 1 / 2 3 1 ,  Ak = Ak(# ~ --//) 

g2~ = 2231/(1- #2)(1 + P - S )  2, (2~ = (2~(//~ - / / )  

b. 2",.2, i =  3, 4. First, for S32, with the help of (C.4) for njs we find 

233 = --211,  2 2 3 =  --241,  ) ~ 1 3 = 2 2 3 ( # ' +  - - / / ) =  - - 2 4 1 ( / / ~  - - # )  

)~,3 = 2 ( s  2 - 4P)/P, 0 2 = 2233/(1 - / / 2 ) ( 1  + P -  S )  2 (C.19)  

With (C.19) we prove the identity 213223 = 233234. We find 

)~3)~23 = - # 2 ( S - - P - -  1) 2 ( S -  2)2 + [ (S -2 ) (S+P+ 1)+4(1 _ p ) ] 2  

and substituting (C.3) for //2, we can identify with 233234 = 

8(S 2 -  4 P ) ( S - P -  l ffS. Consequently, the quadratic representation (C.15) 
holds and the roots are n03 = --noj2j3/233. 

We prove that no2A2 is a common root to L'/2, i = 1 and 3. Using the 
identity (C.15) for i =  1 and (C.19) we get 

223/233 = -223/211 = 241/211 = 221/231 = - A  2 

Finally, from the relation 213/233 = 223/)~33 (with # ~ - # )  we see that the 
other root is no, J2  = nolA2(//~ -//). Second, for Z]  with (C.4) for nj4 we 
find 

224 = 214(# ~ - - / / )  = --'~31, 234 = 2(S 2 -- 4P)P 
(C.20) 

)~44 = --~11,  0 2 = 2234/(1 - -  # 2 ) ( S  - -  P - -  1 )2 
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In the transform 3--*4 with no3 ~ no4 and n]3 ~ nj4, no1 and no2 are not 
changed. This means that for the product of the two factors no3 - nojAk in 
(C.15), only noj, j = 1, 2, do not change and we still have a product of two 
similar factors. Consequently, the identity 214224 = 234,~,44 necessarily holds. 

In order to prove that S~ and S]  have the common root nolA1, it is 
sufficient to notice that 

214/234 = 244/224 = 211/231 = - - A  1 

Finally, from 224/234 = 214/234 (with #--* - # ) =  -A1,  we see that the other 
root for 272 is no2A1. We write down 22~, i =  3, 4: 

n0322~ = (22(n03 - nol-~z)(n03 -- nozA2) 

n03S] = Q](n03 -- nolA,)(n03 -- nozA 1) 
(c21) 

with (2~, i =  3, 4, given in (C.19)-(C.20) and A~, ~]i, i =  1, 2, in (C.18). 

C.3.3. ~'~ = Z]=o ni l= n3 i+  I ' /2. To the linear n0i polynomial/',.2 in 
(C.15), we add 

n3i = ?i3iff2~ -t-//04/~33 -- / /02 Y3 -- nol)/n34 

Here ~3e=//3////32 is equal, respectively, to Y3, 1, /~33, /~34 for i =  1, 2, 3, 4. 
Writing the sum as a linear no~ polynomial, we want to prove that the coef- 
ficient of//04 is the product of those for no1 and no2. This leads for 223 to the 
conditions 

/'13i = ~r "q- 23i/~33 "~ Y321 i  "~ 22i),  i -- 1,..., 4 (C.22) 

with the 2ji defined in (C.16)-(C.19). If (C.22) holds, the roots of//o3 $ 3  a r e  

//03/n01 - 03 - 2 3 : ( / / 3 i O 2 / / / 3 4  - -  ~'~i 21i/23i)/~-~i, 

no4/no 2 (~3(203 - 2 3 = y3 /n34  --  ~"2i 22i/23i)/~-2i 

3 __/~3i~03 -t- O 2 (2 i - -  
(C.23) 

We write down identities useful for the proof of (C.22): 

[ 4 P -  (P + 1)S]/ (S  2 - 4P) 

= EpZ(1 + P - S ) +  I + P + S ] / E # z ( S - P  - 1)+ I + P + S ]  

(#-- 1)P241 - - ( # +  1)231 = E 4 P - S ( P +  1)]E1E2 (C.24) 

(El Ez) - I  = { [4P--  S(P + 1)] S 

+ #S2(P - 1 ) ( S -  P -  1)/(S + P + 1) } / 8 P ( S 2 - 4 P )  
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These identities depend upon #, P, and S, which are considered as indepen- 
dent variables. For  their proofs we identify both sides of the relations, 
substituting #2 by (C.5). 

a. 2-~, i =  1 ,2 .  For  S 3 the lhs of (C.22) is Y3 and we rewrite 

2y3 [4P -- S(P + 1)] -- )L2~ =/~34/~41 -Jr-/~33,~31 (C.22') 

From (C.5) for ~33, /734 w e  see that the rhs is linear in Y3. Further, Y3 is 
only in the first term of the lhs. We identify terms proportional to or 
independent of Y3. In the rhs the term proportional to Y3 is 
2 [ ( / a - 1 ) P 2 4 1 - ( # +  1)231]/D~D2 and with the identity (C.24) it is equal 
to the Y3 term of the lhs. The y3-independent term in the rhs is 2/CIC2 
multiplied by the factor - ( # + 1 ) P 2 4 1 + ( / a - 1 ) 2 3 1 .  With the identity 
(C.24) this factor becomes (S2-4P)E1E2, so that the y3-independent 
term is -221. For S 3, we start with S3 and use the transform 
(nm ~ no2 ,  Y3 ~ y31, /73i--*n3iy31), while the roots are obtained 
from (C.23): 

3__ 3 
no3 ~Y" 1 - -  O l ( r / o 3  - -  n m A s ) ( n 0 3  - no2A6) 

3__ 3 no3 ~Y'2 -- O2(n03 -- nol A6)(n03 - no2As) 

A 6 = (if203 y3/e34 -k- A202)/O~ (C.25) 

3_O~  + 03 
~'~i - -  O i  

45 = (o  o3 y3/~34 + 0 ~ 1 ) / 0 ~  

~6 = (0~ + 0~7t2)/0~ 

b. 2-,?, i = 3, 4. For  S 3, the lhs of (C.22) is n33 and we rewrite 

2(4P-S2)(r133q-n34/P)=Y3)~13q-'~23=Y3J,23(~ ---r - # )  + )~23 (C.22") 

With (C.5) for /~339 /~34, the lhs has a structure similar to the rhs: 
y3H(-#) + H(#) with 

H ( - # )  = 4 ( 4 P -  $ 2 ) [ ~ ( S -  P - 1) - S -  P -  1 ]/SE1 E2 

and we must verify that H(/~)= 223. Using the third identity (C.24), we find 

[ # ( l - P )  S ( S - P -  1)/(S+P+ 1 ) - 4 P +  S(P+ 1)] 
2PH(#)  - 

[ ~ , ( s - P - 1 ) -  s -  P - 1 ) ]  -~ 

In the product we use (C.3) for #2 and identify with 223. For  $43 we 
exchange 3 ~ 4 and finally obtain 

822/52/3-4-27 
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no3 S3 = (no3 -- Asnol)(n03 - Asn02)0 3 

no3 X43 = (no3 - no1-~6)(n03 -- nozA6) (C.26) 

=  330 03 + o 4  = 0 03 + 0 ]  

C.4. ~'i for S =  - 2 ( P + 1 )  and p = (1 - P ) / 3 ( 1  + P )  

C.4.1. Calculations of t h e  ~'i. It is useful to introduce a new 
parameter  Q, a function of P; from (C.5)-(C.6) we find for the cubic Y3 
equation and /~33, /~34: 

Q = 3 P / ( I + P + P 2 ) ,  y 3 + O 2 + y 3 ( y 3 + Q ) ( 4 + O ) = O  
(C.27) 

3 P ~ 3 3 = Q ( Z P + 1 ) + y 3 ( P + 2 ) ,  3 ~ 3 4 = Q ( P + 2 ) + y 3 ( 2 P + l )  

For  S ~ the expressions of A1, A2, and 0 o3 in terms of Y3, t~33, and/~34 a r e  
the same as (C.11). For Z~, due to the use of the transform ~--.  - p ,  we 
write down some parameters as functions of #, P: 

C~ C2 = - 2 ( 1  + p2 + 4 P ) / 3 ( P  + 1 ) + 2#(P - 1 ) = 4 P / Q ( P  + 1 ) 

E1E2 = C1 C2(# --* - k t ) =  - 4 P / ( P  + 1) 

/~21 = --8( P2 -}- P + 1 )E l  E2/C~ C 2 (C.28) 

231 = -6/~(P + 1 )(2P + 1 ) + 8P 2 + 2P + 2 

O2(2p + 1)(P + 2) = 23~/2 

which lead with our chice for the square root of kt2 = [(1 - P ) / 3 ( 1  + p) ]2  to 

A z = 1/2P, A 2 = Z/P, .41 = Q/Z, .3 2 = 2/Q 

For  Z~ we make 
0 3 , i = 3 , 4  [see 

A5 

A6 

A5 
A6 

def: X 

xo? 
x a o ~  

02  = 6P2/(2P + 1)(P + 2) = 2P0~  (C.29) 

0 2 = 6 P / Q ( P  + 2)(2P + 1) = 0 ~ / 2 P  

explicit the expressions (C.25) and write down 0 o3 for the 
(C.26)] 

= (Q2 + y23 + Qy3 - 3y3)/(2Q + y3 ) (PQ - y3) 

= (2Q + y3 ) / (PQ - y3) 

= Q(Q2 + y2 + Qy3 - 3y3)/(2y3 + Q)(y3  - o e )  

= (2y3 + Q)/ (Q(y3  - e o )  (C.30) 

= 9 P ( n 3 3 n 3 4  - -  Y3) = (P + 2)(2P + 1)(Q2 + y2 + Oy3) 

= 3 P ( O P -  y3)(2Q + y3) 

= -3P(2y3  + Q ) ( P Q  - y3), xo~  = -r~349P 
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C.4.2.  Sufficient Positivity Conditions for Is i .  Let us choose 
0 < P <  1; then the cubic equation (C.27) with 0 < Q <  1 has three real 
roots. We are interested in the Y3 root such that - 1  < Y3 < 0, which, of 
course, cannot be written down explicitly in terms of Q. However, this 
determination can be defined by appropriate choices of two associated 
quadratic equations: 

P[3= l - (1 - f 12 )  1/2, [3= 2Q/(3-Q) 
(c.31) 

Q= -2y3[1-(1-~)~/2]/~, c~=4(l + y3)/(4+ y3) 

from which we easily find the following results. 

k e m m a  6. I f - l < y 3 < 0 ,  t h e n 0 < ~ < l ,  0 < Q < l ,  0 < / ~ < l ,  and 
0 < P < I .  

In the sequel we always assume the Y3 determination such that 

0 < P < I ,  - l < y 3 < 0 ,  0 < Q < I  (C.32) 

and for Si > 0, we seek conditions on P, no~, no3. 

a. Positivity for s  Since the roots are positive, we must check the 
signs of n23 and the locations of the roots. 

L e m m a  7. AI<A2, AI<A2, AI<A2, =Q/2>0. 
A I < A  2 is obvious from (C.29); AI<A 2 is equivalent to 0 < 1 + 4  

(p + p2); A 1 < A2 is equivalent to 0 < 4(1 + P) + p2; and 12~ as well as P, Q 
are positive. 

L e m m a  8. Z'~ > 0 if no~ < no2A~/A~ = nozPQ, 0 < no3 < nmA~. 
Due to PQ < 1, we get no1 < n02 and 

no1 At = inf(nol A1, nm A2, no2A1, nozA2) 

Since the coefficients of no23 are positive and no3 is outside the four intervals 
constituted by the roots, then S 2 > 0. 

19. Positivity for Z ~ Here two roots are positive (A3, An positive), 
while the two other are negative (-43, A4). Similarly, the coefficients of n~3 
for i =  1, 3 are positive, while those for i = 2 ,  4 are negative. For these 
results we must first find inequalities for y3/Q in (C.31). 

k e m m a  9. - l < y 3 / Q < - l / 2 a n d  y3/Q+(2P+l)/(P+2)<O. 
From (C.31) for Q=Q(y3,~) we have both the inequalities 

(1-  ~ ) m <  1 -  c~/2 and > 1 -  ~ and the first two inequalities of the lemma 
follow. For the last inequality we define a scaling parameter )7 and from the 
cubic equation (C.27) find Q = Q()7): 

~=y3/Q--*Q= -(2)7 + 1)2/()7 + )72 + 93 ) ,  - 1 < ) 7 <  -1 /2  (C.33) 
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From (C.31) for P=P(/~)  and ( l - - f 1 2 ) l / 2 > l - - f l  2 we find the bound 
P < 2 Q / ( 3 -  Q). Further, since (2P + 1)/(P + 2) is increasing, it is bounded 
by the expression obtained by substituting the Q (or 9) dependent bound 
of P: 

37 + (2P + 1 )/(P + 2) < (1 + 2)7)(37 + 1)(1 - )~2)/2(37 + 37 2 + )7 3) < 0 

k e m m a  10. /~33<0, /~34>0. 
From (C.27) for /~3i and Lemma 9 we find 

3P~33/Q = 2P + 1 + (P + 2) y3/Q < 0 

3/~34/Q = P -k- 2 -t- (2P + 1 ) ySQ > 1 - P > 0 

L e m m a  11. / ~ 3 3 / ~ 3 4 - - y 3 > 0  and 0 ~  for i = 1 , 3  ( < 0  for 
i=2 ,  4), and A3>0,  A4<0,  4 3 < 0 ,  and 4 4 > 0 .  

From the explicit expression of X given in (C.30), we see both the first 
inequality and 0 ~  0. From the expressions (C.11) linking 0 03 and the 
other 0 03 and Lemma 10 the signs of 0 03 follow. The signs for the roots 
Ak, 4k, k = 3 , 4 ,  given in (C.11) are consequences of the signs of 

23, /~33,/~34. 

Lemma 12. 0 < A 3 < A  4 . 
We find ~z~ 4 - -  A 3 = (Y3 --/~33/~34)/Y3/~34 and  apply Lemmas 10 and 11. 

k e m m a  13. S ~  ifO<nolA3<no3<nm44. 
For each s one root is positive, while the other is negative. From the 

signs of the coefficients of n23 and of the roots we obtain S ~ > 0, i = 1, 3, if 
no3>nolA3; S~ > 0, i=2 ,  4, if 0<no3 <nmA4. On the other hand, due to 
Lemma 12, the interval (r /olA3,  //01A4) is not empty and no3 must stay 
inside this interval. 

c. Positivity for s Here all the roots as well as the coefficients of 
/'/33 a re  positive. 

k o m m a  14. 0 3 > 0 , i = 1 , 2 , 3 .  
Due to X >  0 in (C.30), the sign of 0 3 is that of 2Q + y3 > Q + y3 > 0 

from Lemma 9. With this lemma the sign of 0 3, given by - (2y3 + Q), is 
positive. Finally, 0 3 written down in (C.26) is the sum of two positive 
terms. 

k e m m a  1 5. /~34 < Q/2, 4P/Q > 1, and 043 > 0. 
We have 3/~34 = Q(P+ 2)+  y3(2P+ 1) and we find the first inequality. 

For the second we get 4 P / Q = 4 ( l + P + P 2 ) / 3 > l .  Let us rewrite 
043 = 003+ (2 ] and apply these results: 

0 3 = /~34(~'2203 "~- 2Pg-22/n34) >/~34(~ 03 + 4Pf22/Q) >/~34 ~ 3  • 0 
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kemma 16. A k > 0 , . ~ k > 0 ,  k = 5 , 6 .  
These results follow from the explicit expressions (C.30) and from the 

above inequalities: Y3 < 0, 2y 3 q- Q < 0, and Y3 q- Q > 0. 
The roots and the signs of ng3 are positive, so the S 3 will be positive 

for no3 less than the smallest root and we must compare the A~, Ak. 

k e m m a  17. A6<As ,  A6<As ,  andPQTI6<A 6. 
Using Lemma 9 and the expressions written down in (C.30), we find 

A 6 / A 5  = A6/A5 = -(2y3 + Q)(2Q + y3)/Q(Q 2 + y~ + Qy3 - 3y3) 

1 -A6/A5 (C.34) 

[Q(Q2 + 2 
= Y3 + y3Q) + 2(y3 + Q + y~)]/Q(Q2 + y? + Qy3 - 3y3) > 0 

P Q f t 6 -  A6= [ ( P +  1)(Q + y3) + Q + Py3] / (y3-  PQ)<O 

We notice that Q + PY3 > Q + Y3 > O. 

Lemma 18. S ~ > 0  i fO<no3<nolA6 and nol<no2P Q. 
It is sufficient to prove that no~-~6 is the smallest among the four roots 

of X 3. From Lemma 17 and the assumptions of Lemma 18 we find 
F/01 z~6 < n o 2 P Q A 6  < no2A6 "< no2A5 and n01A 6 < nolAs. 

d. Positivitg for a# s For the positivity of S 2 3 S03 i, Z'i, separately 
we have found three n03 intervals. It remains to show that their intersec- 
tions is not empty. We want to prove that the interval (n01A3, nolA6) is the 
intersection of (0, nolAl), (0, nolA6), and (nmA3, nolA4). 

k e m m a  19. A6<A1 and A3<.,~6<~'~4. 
These results come from the explicit expressions 

~/~6 - -  A~ =/~34(2P + l ) / 2 P ( y 3  --  P Q )  < 0 

A3 - ~'~6 = (2P -t- 1 )(Q2 + y~ + Qy3)/3y3(pQ _ y3) < 0 

"~6 - -  ~z~4 = 6(e + 1)(0 2 + y~ + Qy3)/Q(y3 - PQ)~34 < 0 

(c.35) 

Theorem 2. Sufficient conditions in order to have all 12 S i>  0 are 

0 < P < I  ( - - i  < y3<0) ,  O < n o l < n o 2 P  Q , n o l A 3 < n o 3 < n o l A  6 

with A3 = / ~ 3 3 / Y 3  and Q, y3, /~33 functions of P given in (C.27), while ~z~ 6 is 
written down in (C.30). Finally, we write zj = z+ such that the product is P 
and the sum - 2(P + 1), 

z + = - P - I + _ _ ( P 2 + P + I )  ~/2, z + + l > 0 ,  z + 1 < 0  (C.36) 
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C.4.3. TIT2>0, The sign of ~l"f2 is given by the product of two 
quadratic//03 polynomials: 

zlz24n23/3(P+ 1) = ~11~, J / =  n23-2no3~+ +nol//o2/Z+ 

defa+ =no~/E+ +no2/C+_, C+ = -2/I-1 + ( P + 2 ) / ( P 2 + P +  1) 1/2] 

E+ = - 6 P / [ 2 P  2 + 2 P -  1_+ (2P+  1 ) ( p 2 + p +  1)1/2] 

with E+,  C+ the quantities Ei, Ci for zi=z+_ defined in (C.2) for the 
general formalism and calculated here for S =  - 2 ( P +  1) and 
3/~ = ( 1 -  P)/(1 + P). For each i value the two roots of the polynomial Y,. 
are real and opposite (z+ <0).  It follows that r1~2>0 if, for instance, 
0 < no3 < inf(no3 . . . .  no3,z ), where the two positive roots are 

//03,z+ = ~ +  "k- X~+_, 3_+ =~2_+ _nolno2/Z+_ (C.38) 

From Theorem 2 we must have/703 < nol,~ 6 <//olA1 (see Lemma 19). Then 
a sufficient condition is 

"~lZ2>0 if no3,z + >nolA 1 =nol/2P (C.39) 

Lemma 20. C + < 0 ,  E+ <0,  ~+ <0 ;  and C _ > 0 ,  E > 0 , ~  >0. 
These are consequences of the assumption (C.32) for P and noi > 0. 

Lemma 21. def X+=no2/z++no~/4P2-~+/P;  then X + < 0  and 
no3,~ + > nol/2P. 

We have 

X+ = no2(1/z + - 1~PC + ) + no1 (1/4P 2 - 1/PE + ) 

Since the coefficient of no1 is positive and no1 < no2PQ it follows that 

X +/no2 < 1/z + - 1~PC+ + Q / 4 P -  Q/E + 

= _(p2 + 5P/2 + 1)/2(P 3 + p2 + p) < 0 

2 ~ ~ 2  o r  Consequently, we get X+ no1 + c~+ 

(no l /2P-~  + )2 < ~2+ - nolno2/Z + --3+2 

Taking the positive square-root determination in both sides of the 
inequality, we get 31+/2 + ~ + = no3,z+ > nol/2P. 

L e m m a  22.  defX = n o l / 2 P - ~  ; then X < 0  and no3,z > 
nol/2P. 



Discrete Boltzmann Models 947 

We have X =nol(1/2P--1/E )-no2/C . The coefficient of no1 is 
still positive for our solutions with S i >  0, no1 sup < nozPQ, then 

X_/no2 < -1 /C_  + Q/2 - QP/E_ = (2P + 1 )/2 - (p2 + p + 1)1/2 < 0 

Consequently, we get nol/2P < e_  < c~_ + A1/2 ---~/'/O3,z_ �9 

T h e o r e m  2his .  The sufficient conditions of Theorem 2 lead to Ni 
solutions with ~1"/22 > 0; then, for these solutions, their asymptotic positivity 
conditions Xi > 0 are satisfied. 

C.4.4. Another  no3 Interval  Leading to ~ i > 0 .  For $2, S~ all 
coefficients of n~3 as well as all roots are positive. Instead of the no3 interval 
less than the smallest root as in Theorem 2, we choose the no3 interval 
larger than the highest root and the two Si will be positive. Further, if this 
highest root belongs to the interval (no~A3, nolA4), then s > 0 with no~A 3 
replaced by the highest root. We still assume 0 < P < 1 and - 1 < Y3 < 0. 

L e m m a  23. If no1/no2>A2/42=Q/P>l and if no3/nol>su p 
(42, As), then Z'~ > 0, s >0 .  

Due to the assumption and Lemma 7, we find 

nol-32 = sup(nolA 1, nozA2, no142, no241) 

and X~ > 0. Further from the relation 

A2/42 - ASIA5 = 3r~33/(2y3 + Q) > 0 
we see that 

nolAs/no245 > AeAs/4245 > 1 

Adding the results of Lemma 17, we get 

nolA 5 = sup(nolAs, nozA6, nolA6, nozAs) 
and s > 0. 

k e m m a  24. A3 < 42 < 4 4 ,  A 5 < lz~4, and S ~ > 0 for sup(42,  As) < 
no3/nol < 44. 

These results are deduced from the identities 

42/24 - 1 = (2P + 1)(2y3 + Q)/3 < 0 

A3/A 2 - 1 = (2P + 1) Q(2Q/3Py 3 - 1/6)<  0 

As~A4 - 1 = (Q2 + y~ + y3 Q)(2P + 1)(y3 - Q)/3(2Q + y3) (QP-  y3) < 0 

and applying the previous results: y 3 < 0 ,  2 y 3 + Q < 0 ,  Q + y 3 > 0 .  We 
obtain the following theorem. 
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T h e o r e m  3. The Z" i are posit ive if P and the noi are chosen such 
that: 

0 < P < I  ( - 1  < y 3 < 0 ) ,  n o l > n o 2 Q / P  , 
(C.40) 

sup(-32, As) < no3/nm < -34 

We notice that numerically we have found A2 < As. 
The problem of r~z2>0  remains as in Section C.4.3. This property 

holds if no3 > sup(no3,z+, no3.z_), which gives for the allowed interval the 
sufficient condition 

T I T 2 > 0  if no3,~_+ <nol~]2=nm 2/Q (C.41) 

k e m m a  25. defX+ = n o j z  + + 4 n o l / Q Z - 4 o ~ + / Q > O  and no3,z+ < 
2nojQ.  

e+,  z+,  C+,  E+ ,  and c~ .... are written down in (C.36)-(C.38). We 
have 

X+ = nol(4/Q 2 - 4 / Q E  + ) + no2 (1/z + - 4 /QC + ) 

Due to E+ <0 ,  the coefficient of nm is positive; for no2 we find ( 2 P +  1) 
2 > ~ 2  or [ P -  1 + (1 + P + P 2 ) U 2 ] / 3 P  and X+ >0.  Then we get X+nol+r162 

( n o 1 2 / Q - a + )  2 > d + .  Taking the positive square-root determination in 
both sides, no12/Q > A 1/2 + a + + = ~ 0 3 ,  z +  " 

L e m m a  26. d e f X  = n m / z  + 4 n o j Q 2 - 4 e  / Q > O  and no3,z < 

2nol/Q. 
We have 

X _  = nm(4/Q 2 - 4 /QE ) + no2(1/z_ - 4 /QC)  

The coefficient of n m is positive: 

1 / Q -  1/E = [3 + ( 2 P +  1)(1 + P +  P2)u2]/6P 

while the coefficient of no2 is negative: 

1/z - 4 / Q C _  = (2e + 1 ) [ P -  1 - (1 + P + p2)V2] 3 e  

x is positive if it is positive for sup n02 = n o l P / Q .  We find 

X /nox > [6 - P -  pZ + 2p3 + (2P + 1 ) ( 2 -  P)(1 + P + P Z ) m ] / 3 P Q  > 0 

From X nm + e2  > a2 or (nm 2/Q - o~_ )2 > A _. With similar calculations 
as above we find no12/Q-c~ = n o l ( 2 / Q - 1 / E  ) -noR~C_;  the coefficient 
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of n01 is posi t ive while the coefficient of no2 is negative.  However ,  for 

sup n02 the sum is still posit ive.  Consequent ly ,  t ak ing  the posi t ive square  
roo t  in bo th  sides of  the last  inequal i ty ,  we find n o l / 2 Q - ~  A 1/2 or  

no3.z_ < 2nol/Q. 
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