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Construction of Positive Exact (2 + 1)-Dimensional
Shock Wave Solutions for Two Discrete Boltzmann

Models
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It is proved that (2 + 1)-dimensional (space x, y; time ¢) positive exact shock
wave solutions of two discrete Boltzmann models exist. For each density N,
these solutions are linear combinations of three similarity shock waves,
Ni=ng+2,;n/[1 +dyexp(z;y+y;x+p;t], j=1,2,3. Two models with four
independent densities are investigated: the square discrete-velocity Boltzmann
model and the model with eight velocities oriented toward the eight corners of a
cube. The positivity problem for the densities is nontrivial. Two classes of
solutions are considered for which the two first similarity shock wave com-
ponents depend on only one spatial dimension, y;=const-7;, j=1,2. For the
positivity, if 7,7, >0, it is sufficient to prove that the 16 asymptotic shock limits
Rogs Mo+ My, D2 o1y, 30y are positive. The density solutions are built up
with five arbitrary parameters and we prove that there exist subdomains of the
arbitrary parameter space in which the 16 shock limits are positive. We study
numerically two explicit shock wave solutions. We are interested in the
movement of the shock front when the time is growing and in the possible
appearance of bumps. In the space, at intermediate times, these bumps represent
populations of particles which are larger than at initial time or at equilibrium
time.

KEY WORDS: Kinetic theory; discrete Boltzmann models; shock waves;
exact solutions of nonlinear equations.

1. INTRODUCTION

There has been much study of discrete Boltzmann models, where the
velocities can only take the discrete values v,, |v;| = 1, in the hope of finding
useful results for both kinetic theory and fluid mechanics. Since the popular
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Broadwell”’ model, which provided for the first time an explicit solution of
an infinite-strength shock, many others have been proposed.” To each
velocity v, is associated a density N, and for the N, with two spatial coor-
dinates we must consider models velocities in a plane or in a three-dimen-
sional space.

In (14 1) dimensions (space x, time ¢), the exact solutions are the
sums of two similarity shock waves,® and four classes of different solutions
are known: (1)shock waves,® (2) periodic propagating solutions,
(3) solutions that are periodic in space but nonpropagating in time,*>
(4) densities relaxing toward nonuniform Maxwellians.®

In the (24 1)-dimensional space, exact solutions are missing. The
discovery of exact two-spatial-dimensional solutions could help toward
the theoretical understanding of these models. From the physical point
of view it is clear that (2+ 1)-dimensional solutions are more realistic
than (1 + 1)-dimensional solutions. As we shall see, the construction of
such solutions is relatively simple; the great difficulty is the positivity
condition.

The aim of this paper is twofold. First, to give a rigorous proof of the
existence of positive shock waves, and second, to explore some physical
aspects of these solutions.

We consider two models; the first is the square-velocity model®®
attributed to Maxwell with v, and v, along the positive x and yp axes,
v, +v,=v,+v,=0, leading to the equations

N, +N =Ny —Ny,= —N3;—N3y= —Ny+ Ny,
=aN3N4—N1N2, a>0 (1.1)

The second model is cubic,!” with eight velocities oriented toward the eight
corners of a cube, with four independent N, (Ng=N,, Ny=N,, N;=N,,
N,=N,), and the equations reduce to (1.1) with the change of variables
{(x+ y)2—-x, (y—x)/2—> y. The total mass is M =3, N, with i=1,..,, 4 for
the first model and i=1,.., 8 for the second one. Both mass and momen-
tum conservation laws hold. For instance, M,+0.J,+0,J,,=0 with
components J,,=N,—N, and J,)=N,;— N, for the momentum J. For
a>0 but a+# 1 the microreversibility is violated. Introducing'® the relative
entropy H=3 N, log(N/a;), ;> 0, a,a,=axso,, we find from (1.1), as
usual, H,+(0,---+0,---) H<O.
The similarity shock waves are

N;=ny+n;/D,;, D=1+dexp(ty+yx + pt) (1.2)
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where ng;, n;, 1, 7, p, d>0 are constants, while the (2 + 1)-dimensional
solutions are simply the sums of such solutions:

Ni=no+Y ny/D;, D;=1+dexp(t,y+y,x+p;t), d;>0 (13)
j

Substituting (1.3) into (1.1) and writing that the coefficients of D!, D2,

const, (D,,D,)~!, m+ p, are zero, we find

nu(p;+y)=nplp;—v)= —np(p;+1,)= nu(t;— p;)

=ANphi— Ny Rp = —a(ngzn, + Roahj3) + Ao My + Noa My (1.4)

ang3Nog = Mo Noz
a(nm3np4+nm4np3)=nmlnp2+nm2np1’ m;ép

Neglecting the m # p relations, we see that the others represent the con-
ditions for each jth component to be similarity solutions. However, (1.1) is
not a linear system; in order for the sum to be a solution we must have
supplementary conditions [the last of (1.4)]. For a sum of N similarity
components we have N(N—1)/2 supplementary conditions. Even if the
constraints (1.4) are compatible, the solutions are physically acceptable
only if they lead to positive N,.

In the sequel we consider a superposition of three similarity com-
ponents with 25 parameters and 19 relations, leaving six arbitrary
parameters. Although solutions satisfying (1.4) are easily found with the
help of the computer, I was unable to find any positive solution. This
means that we must understand the mathematical structure of the
positivity constraints. Recently,® for the simplest solutions (1.3), an
analytic proof of the existence of positive solutions was shown to be
possible. These solutions relax toward nonuniform Maxwellians; unfor-
tunately, they are physically poor, because their total masses are constants.

The aim of this paper is to prove analytically that positive (2+1)-
dimensional shock waves exist. What are the positivity constraints? In one
spatial coordinate x we only have two asymptotic shock HLits® when
|x| = oo for each N, at ¢t =0. If these limits are positive, we can manage the
d; so that N;>0 for any x value. In (1.3), let us define D;=1+4d, exp X},
X, =const, - X, + const, - X,. In the X,, X, plane at t=0 (or x, y plane)
six asymptotic shock limits exist for each N, (for instance, if the axis X3 >0
is in the first X, X, quadrant, we find ny;, 1y, -+ ny;, Ho; + Aoy Ho; + Ry + A4,
Hoi+ny+ny, 2 n,;, j=0,..,3). Unfortunately, (1.4) is much too com-
plicated to be solved analytically and we choose a simpler situation.

In this paper we assume that the first two j=1, 2 components depend
upon only one coordinate, y + const-x at t=0:

Dj=1+djeXp[Tj(y+Hx)+Pjt]a Y= Tl j=12 (1.3%)
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In the x, y plane only four asymptotic shock limits exist, depending on the
T,T, sign:

g™
=

2
. 03 _ 2 _ 3_
117, > 00 Ry, 2 =ng; + 1y, 2= Z R, 2=
j=0

J

¢ (15)
73T, <00 ng+n;+ns, Roi + Ry, Jj=12

In Appendix A it is shown that if the four asymptotic shock limits (1.4) are
positive, then we can choose the d; such that the N, are positive.

In Sections 2 and 3 we prove (see Appendices B and C for the details)
that in a space of five arbitrary parameters, from which we reconstruct all
the ny;, n;, 1;, 7;, p; parameters of the N,, there exist subdomains where the
16 X, (corresponding to t,7,>0) shock limits are positive. If we define
Z;=nu/ns, j=1,2, P=z,z,, and S=z,+z,, the chosen five arbitrary
parameters are

(P, S, ng>0, i=1,2,3) (1.6)

The mathematical structure of these shock limits, allowing an analytical
positivity study, is provided by a factorization property. All 2, are linear
combinations of the four ny; with P, S-dependent coefficients. Further, they
can be written as second-degree n,; polynomials:

Ny 2=, (ng3 — ngy A )(ngs — ngy Ay) (1.7)

with P, S-dependent coefficients (see Tables I and II). For each &, we seck
the ny; interval in which X, is positive and study the intersections of these
12 intervals. Further, we must compare the roots of the 2'; and we find that
the intersection is not empty if the ratio ny,/ng, has either a P, S-dependent
lower or upper bound. All these calculations are tedious; however,
invariance properties allow us to reduce the task with the possibility of
finding X, from X, and 2, from X;.

(i) From (1.1) we sce that x«» —x is equivalent to N, < N,. For
2y — 2, we change ny, <> ng, and for j=1,2, n; < n;, [or pe —pu from
(1.3)]. For the exchange n,, <> n;, we have introduced a P, S-dependent
parameter y; in the formalism and y; = n;,/n;, becomes 1/y;.

(i) For 232X, we change ng; > ny, and njen,. From the
definition of z;, this is equivalent for j=1,2 to z;—> 1/z, or P~ 1/P and
S S/P.

In Section 2 we choose the simplest case, u=0 in (1.3’), or the j=1, 2
components only y dependent at ¢=0. This is a pedagogical example for
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which the mathematical machinery is ftractable. The final result,
Theorem 1, gives the explicit P, S domain, the ny/ng,(P, S) upper bound,
and the nq;( P, S) interval for which all X, are positive. The price to be paid
for this relative simplicity is that the microreversibility parameter a is P, S
dependent and a < 1/3, which excludes a=1.

In Section 3 we look at the more general case where the two first com-
ponents are y+ u(P, S)x dependent at r=0. The mathematical analysis
is more complicated than in Section 2, but we find positive solutions
satisfying the microreversibility (a=1). We give the expressions of the X
in terms of the arbitrary parameters; however, for the positivity we restrict
the study to the case S= —2(P+1). In Theorems 2 and 3 we find two
subdomains of the arbitrary parameter space in which all X, are positive.

In Section 4 we choose two examples satisfying Theorems 1 and 2,
leading to N;>0, and construct their total masses M =3 N,. For both
examples we study numerically the equidensity lines M =const at =0 and
the relaxation curves N;, M when the time is growing. For M the four
asymptotic shock limits become

mo=3 ng, ZP=)I%  22=¥rz =Y} (18)

leading to a physical structure more interesting than in one spatial coor-
dinate. These shock limits represent plateaus in the spatial coordinate plane
separated by the shock domain. We find the two highest plateaus in the
upstream domain, while the two lowest belong to the downstream domain.
We look at the possible ways to decrease equidensity lines to link the
highest plateau to the lowest one. We find two different scenarios. First, the
equidensity lines decrease continuously from the highest plateau, cross the
shock domain, and spread out into the downstream domain. In the second
scenario the upstream and downstream domains are completely isolated by
the shock front. A bump is always present in the shock domain. Looking at
the displacement of the equidensity lines when the time is varying, the
second scenario can appear. It can happen that for intermediate times,
populations of particles larger than at initial time or at equilibrium exist.
Physically, this can be explained by a compression of particles, while
mathematically we explain this effect by a shifting of the d; parameters in
(D;) to d;exp(p,t). We study also the movement of the shock when the
time 1S growing.
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2. MODELS WITH TWO SIMILARITY COMPONENTS WITH
ONLY A y SPATIAL DEPENDENCE

We study the (2 + 1)-dimensional solutions

3
N,=no+ Y, n,/D;, D;=1+d;exp(t;y+y,x+p;t)
j=1 (2.1)
Y =7,=0, i=1,.,4

The first two n;/D;, j=1, 2, components are x independent. Our aim is to
prove analytically that there exists a class of solutions N, such that the
asymptotic shock limits &,

o__ 2
27 =ny, 2i= jis

I
1
B

3
IP=ng+ny, Z}=) n; (22)
j=0

J

are positive. All details and proofs are given in Appendix B; here we quote
only the main results. First we write down the expressions of the
parameters of the solutions N; as functions of five arbitrary parameters.
Second, we determine the X, in terms of these arbitrary parameters.
Finally, in the five-dimensional parameter space we find a subspace where
the X, as well as 1,7, are positive.

2.1. Solutions N; (Appendices B.1, B.2)

There exist 19 relations among the 23 parameters ny;, 1, 7;, p;, V3.
However, since the microreversibility parameter a>0 is not fixed, one
supplementary parameter is left. The solutions depend upon five arbitrary
parameters, from which we must express all the others.

We follow the same method as for the previous construction of exact
(1 + 1)-dimensional solutions.”® For each jth component we define a
scaling parameter which is the ratio of two well-defined n,. It turns out
that all the other ratios n,/n; are functions of these three scaling
parameters. Further, one of these scaling parameters can be expressed as a
function of the other two and we are left with only two of these scaling
parameters. We obtain the »;; as linear combinations of the four n,, with
coefficients that are functions of the two remaining scaling parameters.
Finally, the 7, p;,y; are functions of the n,. We define two scaling
parameters z;=n;/n;, and choose for the five arbitrary parameters

(P=zyz,, S=z,+2z,; 0y, i=1,2,3) (2.3)

The microreversibility parameter a is P, S dependent, while ny, and all
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other parameters belonging to the first two j=1,2 components depend
upon the five arbitrary ones:

a=8P/S(S+P+1), Aos = Mgy M/ A3 (2.4)
niz=2{P[nos(1 +2z,) + 2(ne; + ngs)/al + noa(z; + P)}

x [(z;—z)z;— P)17", i#j (2.5)

Mg =ZN3, ny=np=—2z;n5/(1+z), j=12 (2.6)

2t;z;= (z;,— 1)[a(ngs3z;+ nos) + 2z,(no; + 1oz )/ (1 + ;)] 27)
p;= —Tns/(n +ny), Jj=12

For the third component we introduce a third scaling parameter y,, which
is S, P dependent:
Y3=ny/n3,, (1+Y3)2=4(P+1)}’3/S
yiF=—B+(B*-1)" B'=1-2(14+P)/S
Hyp(P+1—=8)=(P+1+S)(noy+noi/ys) +2(ngs P+ nog)(1+1/y3)
ny3= —y3(1 + P)ny,/P(1+ y;), Ry = Y3M3y, Ny = Pny, (2.8)
P3fz3fyg = (N334 N3y ) (M3 N3y — anssnsy)f2
T3(n33 + 34) = p3(n34 —n33)
73(n3y + 13,) = p3(ns —n3;)
We have constructed a five-parameter family of N, solutions. However, the
physically acceptable solutions must have N,>0, and if 7,7,>0, it is
sufficient that the 16 shock limits 2, given by (2.2) are positive. The four

conditions 7y, >0 are easily satisfied if we choose no; >0 for i=1,2,3 and
P, S values such that g is positive in (2.4).

2.2. Analytic Expressions for the X, {Appendix B.3)

First we remark that all the n; written down above are linear com-
binations of the four ngy;, so that the same property holds for the 12 X.
Second, from the relation (2.4) for n,, we see that ngy 2, will be second-
degree polynomials in ny; with coefficients that are functions of P, S, ny;,
and ny,. However, there exist invariance properties:

(i) For i=1, 2 the quadratic relations are
No3 2’y = Q1 (ng3 — noy A ) (o3 — R Ay

- - (2.9)
ng3 s = Qy(ngy —noy A )(Mo3 — R Ay)
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with {2,-, A,, and A4, functions of P, S, and eventually of y;. In this last
case A, =A,(ys— 1/y;). From the relations n; =np, j=1,2, ny/ny; =y,
we deduce that 1< 2 if both sy, <> ng, and y; < 1/y;.

(ii) Similarly we can obtain 3 « 4 if we exchange both ny; < 1y, and
zje>1/z; 0r P> 1/P, S S/P.

(ili) Are there relations between the X of the first family i=1, 2 and
those i=3, 4 of the second one? As we show now, they share common
roots ng; =ny A, or nyA,. The condition [see (B.32)] for a common 273,
22 root is

nOl(l +P+S)+4n04-:0 or n04_*n01n02/an()37 ’103/7102: _S/2P=A2
(2.10)

Ayng, being one zero of X2, it is also a zero of X3. From the 34
symmetry in (ii), we deduce that ng/ng,= —(P+S+1)4P=A, is the
common zero of £Z, X2, In the same way, with the symmetry 1 — 2 of (i),
we find that ny;=ny A4, is a zero common to 22, 2%, while ng,A4, is
common to X2, 32 For 29*, X'P the possible root is

Noa8(P+ 1)+ 1py (S+ P+ 1) S(1+1/y5)=0
or

”03/”022232 —(P+1)/P(1+1/y5) (2.11)

and is in fact the common root. With the symmetries 1 <> 2 and 3 — 4, we
deduce that ny, A4, is a common zero of X9, X93; ny, A, is common to
2P, X9, while ny, 4, is common to X3, X'P.

Finally, for each X, family there exist only four different roots and this
result simplifies the positivity study of the 2.

2.3. Sufficient Conditions So That All Z; Are Positive
(Appendices B.4 and B.5 and Table I}

In the five-dimensional parameter space, the analytic determination of
a subspace in which all the X, are positive seems untractable. For each of
the 12 second-degree n,; polynomials, we must check both the sign of the
coefficient of n%, and the location of the two roots nyA, or nyA, and
determine the intervals of ny; in which X, >0. Afterward we must check
that the intersections of these 12 intervals are not empty. Fortunately,
scaling parameters exist which simplify the discussion. Practically, the
study of three parameters will be important.
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We introduce a new arbitrary parameter s, a function of both P and S,
and which replaces S. We also define new functions deduced with the
factorization of trivial factors:

s=—S/(P+1), B;=A,P/(P+1), B,=AP/(P+1)

_ (2.12)
gz = N3 P/(P + 1), Lingy=2{s+1)

In Table I the 12 X, are written down as second-degree 7, polynomials
with roots ny; B, or nojﬁk. The important simplification is that only s is
present in the B, and B, and in the coefficients of 713, (multiplied eventually
by trivial P factors).

Let us write g, z;, and y, with the s parameter:

a=s"'s—1)7'8P/(P+1)%,  yi=pi=—(1+2/s)=(2/s)s+1)"
2z, =5 (P+1)(=1F6"), os=1-4P/[s(P+1)]* (213)

If we assume P >0 and, for instance, s > 1, then the signs of £, 73, and B,
are those of X, ny;, and A,. Further, a is positive, and y; and z, are real. In
Appendix B.4 we prove the following theorem.

Tabie |. Z;=nyZ;/(s+1) for the Models of Section 2

L% = d(figy — ng; B )(figs — gy By)

f% = 4(Figy — noy By )(Aigs — ngy By)

L3=(P+1) P~} (s —1){Figy — 1oy B2 ){figs — 102 B2)
4= (P + 1) (7153 — 11gy By )iz — g2 B1) 25

EP = (fig3 — g1 Bs) gz — nop Ba) 2(1 + y3)

Z9 = (s — oy By)igs = noy Bs) 2(1 + 1/33)

ZP = (P+1) P~ (figs — 1oy By )(Figs — 1o  B3)(s — 1)
9 = (P + 1)(figy — noy By)(igs — nop B4)(—2)

27 = (floy — 1101 Bs)(Flos — oz Bs) 2(3 + y3)

I3 = (fios — oy Bg)(figs — nea Bs) 23+ 1/3)

£ = (flg3 — noy Bs)(figs — gy Bs)(P+ 1) P~ (s~ 3)
I3 = (fioy — oy Bs)(igs — oy Be)(P+ 1) 2(s — 1)

S= —s(P+1), Agg=np; P/{P+1), vF = —~(1+2/s)+(s+ 1) (2/s)
By=(s—1)/4, By=5/2, By= —(1+ y5)7}, By=(s—1) y3/2(1 + »3)
Bs=(s—1)/(3+ y3)=2B¢(s—1)/(s-3)

Be=1[25+(s~1)y31/23 + p3)=[ =25+ s(1 + y3) J/4(1 + ;)
By=Byy;, By=By/ys, Bs=(s—1)y5/(3ps+1)
Bg=[s(1+y3)—21/4(1 + y3)
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Theorem 1. The X, are positive if the following sufficient con-
ditions on the arbitrary parameters are satisfied:

s> 3, P>0, y=yi, 0<ng <ngB¢B,, (2.14)

with 4B,=s—1, By= —-1/(1+y;), Bs=—[25+(s—1)y31/2(3+ y;)
positive. We explain this result. 27 and X?, with eight positive roots, are
positive if 71y, is smaller than their lowest root, which is ng, B, if ny,/ng, <
B¢/B, < 1. With 29 remaining positive inside the interval (ny, B, ng, B.),
the inequality B, < B, leads to (2.14).

The 2, are really asymptotic N, liits if 7,7, > 0. Since 7,1, is (Appen-
dix B.5) the product of two quadratic 7y; polynomials with two positive
roots, it remains positive for 7y; smaller than these roots. This is true for
fig; in the (2.14) interval. In conclusion, Theorem 1 leads to a class of
positive N,.

What are the possible a values in (2.14)? From (2.13) we see that
a<1/3, so that the a=1 value for the microreversibility is not possible.

In Section 4 we fully discuss a numerical example with a small a value
and d; parameters chosen so that N,>0 in the whole x, y plane. Here,
as illustration, for a solution satisfying (2.14) with a=0.3 we report
the numerical values for both the parameters of the N, and the X,.
Starting with s=3.12 (or S= —6.86), P=12, and ry,=1, we find
a=03, z, =018, z_= —6.68, y;y = =294, ny sup=0.042, 0.5151, <
67105/11 < 0.53n,,. Choosing further ny, =32 x 1072 and ng; = 31 x 1072, we
obtain n,= —106, —104, 9x107° n,=—106, 1.04, —3x1077%
n; =045 024, 8x107% n,=-3.02, —042, 107% ;=195 191,
58x107%; p,=145 —1.33, 0.64; y,=0, 0, —0.13, j=1,2,3; Z?=10"2,
0.97,28,1072; 2% =3x10"21,3x107% 3.3; 23=10"2 098, 2.9, 1072,
i=1,2,3,4

3. MODELS WITH TWO SIMILARITY COMPONENTS
DEPENDENT SPATIALLY ON ONLY y+ ux

We study the (2 + 1)-dimensional solutions
3
N;=ng+ Z nji/Dj

j=1 (3.1)
D;=1+d;exp(zr;y +v,x+ p,t), ;= U, j=12

The first two j= 1, 2 components are spatially dependent on only y + ux at
t =0 and we recover the previous model for p=0. Our aim is still to prove
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analytically that there exists a class of solutions N; such that the 16
asymptotic shock limits X'; defined in (2.2) are positive. We have one more
parameter, u; however, we assume that the microreversibility a=1 is
satisfied, so that we still have five arbitrary parameters from which we
deduce all others.

First we define the same five arbitrary parameters as in Section 2:

(ijnj4/nj3= J=L2-P=zz,, S=z,+2z5; n9, i=1,2,3) (3.2)

The connection between the first two components and the third one is still
established with y;=n;,/n;,. However, y, is given by a cubic equation;
this leads to a more complicated formalism for the analytic expression of
the solutions in terms of the arbitrary parameters P and S.

Second, we write down the 16 X, quantities in terms of the arbitrary
parameters. Due to the y; cubic equation and the complication of the for-
malism, we must keep in the expressions intermediate parameters u(P, S},
y3(P, S), fig(P, S)=ny/ns,, i=1,2. As in Section 2, the X, can be written
down as linear combinations of the four n,,. A remarkable property arises,
which unfortunately has only been verified in each case, but has not been
deduced on a fundamental basis. We find always that the coefficient of n,
is the product of the two corresponding ones for ny; and ng,. This allows to
write ny; 2, as a second-degree ny; polynomial

E,-=Q,-<n03+ Y ocj,-noj> if oy =000

J#3
= N3 ;= Q(Ro3 + &y, N(Ros + Ay103) (3.3)

with , and «, only P, S dependent. Fortunately, invariance properties
12 and 3 < 4 allow us to establish this factorization property only for
i=1 and 3 and to deduce it for i =2 and 4. The factorization property (3.3)
simplifies the study of the positivity of the X, We look at the signs of both
the coefficient of n3; and of the roots ny; multiplied by P, S functions. From
this we can decouple the P, S parameters from the ny; ones. The study of
the intersections of the different n,; intervals in which the X, are positive is
mainly reduced to a study of P, S-dependent functions.

Third, we seek a domain of the arbitrary parameter space in which
2, >0. The analytic expressions of u, y,, fi;; as functions of P, § are very
complicated in general, so we choose a simplified case occurring for
S=-2(P+1),0<P<1.
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3.1. Solutions N, (Appendices C.1 and C.2)

There exist 20 relations among the 25 parameters ny;, 1, T V)5 Py
which must be determined from the five (P, S, ny;, i=1,2,3) arbitrary
ones. y is only P, S dependent, while ny, is only n, dependent:

W2=(1+P+8)?*(1+P—S)P?—8P(1+P+5)/S(1+P—5)> )

Mog = Moy Moa/Mo3

We notice that we have two square-root determinations for .
We discuss first the reconstruction of the j=1,2 components. We
introduce the intermediate parameters 71,;= n;/n;,

(3.5)
Ci=p—1—(u+1)z, E;=Cflp— —p)

which are functions of u(P, S), P, and S. We obtain the n;; parameter:
Ny = (—’703Zj —Rgq + Ao Aip + nOZﬁjl)/(Zj - ﬁjlﬁjz) (3.6)

from which we can obtain all the others, n,=z;n;, n;=n;n;4,i=1, 2, and
7;, 7;» and p; [Eq. (C.4)]. For the third component j= 3, the intermediate

parameters y; and #5; are linked by the relations

A3/2=(p—1)/C,Cy~(u+ 1) y3/E E,
N34/2P = -(ﬂ+1)/C1C2+(1_N)y3/E1E2 (3.7)
(s + Aizg) Y3+ fizsfisg(1 + y3) =0
with coefficients that are functions of u(P, S), P, and S. We notice that the
elimination of 7;; in (3.7) leads to a cubic equation for y,, which is written

down in Eq. (C.6). We find for ns, an expression which allows us to deter-
mine all n;; as well as 13, y5, and p; [see Egs. (C.7) and (C.8):

N3y = (Mo3Mi3a + NogTisy — Moy — Moy ¥3)/ (Y3 — Azafizs) (3.8)

3.2. Analytic Expressions of the Z, (Appendix C.3 and Table II)

In Appendix C the study is performed for the three families 293, 27,
and X3. Here, as illustration, we make explicit the simplest case X?* for
which the factorization property is trivial. Further, we show briefly how the
invariance properties allow one to find %, and 2.
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We start with £9 =n,, + yyn5,, which from (3.8) can be written as a
linear combination of the n;:

03 __ (03 = = .y
2V = QP (o3 + Noafizs/Azg — Moy V3/fizg — Ho A/ V3)

o B o (3.9)
QP = y3i3/(y3— 33f34)

Since the coefficient of n,, is the product of those of ny, and ny,, with (3.4)
for ny, we can rewrite
o3 20 = QP (ngs — oy A3) (g3 — oy Ay), (3.10)
As= Y3/, Ay =Ti33/y3

The coefficient 29° of n3, is only P, S dependent and the ratio of the two
roots is ny,/ng, multiplied by 4;/A4,, still a P, S factor. For the other 2%
this factorization structure is also trivial to establish (Section C.31); it
becomes tedious [(C.32), (C.33)] for 22 and ZX7?.

We report briefly the main results established in Appendix C.3. The
quadratic polynomials ny,2; are of the type

Ng3 ;=80 (no; — gy A ) (g3 — Ny Ay) (3.11)

with 4., A,, and Q, functions of P and S and of the intermediate
parameters v, fiy;, and p. For the transformations 1< 2 and 3«4 we
consider the intermediate parameters as independent variables, although they
are also P, S dependent.

3.2.1. Exchange 1 < 2. For this transform we must change both
gy <> gy and ny <> nj,. Then (3.11) becomes

Rz > g3 2y = Q,(ng; —”ovzk')(”os _”ozgk)
Q2:Q1(nj1<_>nj2), Zszk(nJ-l(—)an)’ Ak/::

Of course in this transformation, the factorization remains.

First, we consider 2? with Q7 and the roots proportional to 4,, 4,
['written down in Eq. (C.18) and in Table IT]. From (3.5) the transform
ny<>rn;, is equivalent to C;«» E; or p«> —u. Consequently, we find
Q3= Q%u— —p) and A, = A,(n— —p).

Second, for X9 written down in (3.10) we exchange n,, «<»n;, or
equivalently for the intermediate parameters y;— y;! and 73/y; > iy,
Consequently, for 29* we obtain Q3° = 39 and the roots 4,.

Third, for 23, with Q} and the roots 45 and A, written down in
Eq. (C.23) and in Table II for the change X3 -»23 we must perform
U= —u, y3 - y; 1, and A,/ y; — A, As an illustration, let us start with the
root ng As with A5 = (Q%/fi,, + 4,22)/Q23, which becomes the root ny, 45

822/52/3-4-25
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of 23. In the transformation Q3 =07+ Q9 becomes Q3=07+ Q%
Azg%—)A QZ’ Wh]le 9?3/”134—’92 y3/n34.

3.2.2. Exchange 3<~4. We must change both ng; <> ny =
Nog Moa/Hey and nj3<—>n]4 We define ()" = (n;; & n;) and start with (3.11)
for 25,

Ro3d's = Ro3 2y = (Q3AkAk’)T [no; — nOl/(Ak')T] (10— ”02/(Ak)T] (3.117)

and we see that the factorization property holds for X, if it exists for X;.

Table l. £,=%,Q;/ny; for the Models of Section 3

2% =(nos—no1 A o3 — ngz 42) 2= (ngy — 1o, A2)(nos —ngp 4y)
25 = (no3—nos A )ngy — oy 45) Z=(np3—ng A1) (nes— ngy ;)
ZB = (ngy — 1o A3) (03 — Moz Aa ) 203 (no3 — "01A4)("03 - ”02A3)
EOB (1193 — 1oy 43) (103 — ngxA3) 2P = (ng3— no1A4)(”o3 —ngAs)

= (g3 — 1oy As{nos — noa As) 25 = (s~ "0126)(”03 - "02;15)
f% = (193 — no14s)(ng; — ng; As) 2= (nos— 1oy Ag )03 — noa Ae)

General case X2: A, = —Ay/Asy, Ay = —Axn/ls

A=A u— —p), Ay =4P(L+ P-SYS

A =2(4P—S*)E E,/C,Cy
Iy=[P+1—-S)+P+S+11(S—2P)+4P(P 1)
C1Cy=EE)(u— —p)

E E,=2(1+ P+S)[S(P+ 1)—4P]/S(1 + P—S)—2u(P—1)
@ = Q21— 1)1+ P—SY72, @2 =1s

Q3= Q- —p), B= Ay, Q}=2P(S*—4P)

P ysdy=fiyy=A3, Asfys= 1/izy= A4

QP =tize/(ys — AzsFizg) = 9(1)3/)’3=903/ﬁa4='7349(3)3/)’3

I3 As=(QF + 4,00)/Q}, 4e=(QF 3+ 4,90)/2}
As=(QP+4,Q2)/03, 4= =(Q9 + 4,03)/23
P=01+0Q%(i=1,2,4), Q=73 QP + 023
W2=(1+P+8)Y(1+P—S>—8P(1+P+8)/S(1+P—S8)

Particular case S= —2(P+ 1), u=(1—P)/3(1+ P)

2 A, =12P, A,=2/P, A,=2/Q=1/4,
=6PY(P+2)(2P+1)=2P22
=2(1+ P+ PY)/(P+2)2P+1)=Q%2P

Z%:idem

23 As=(02+ ¥3+ 0y~ 293)/(2Q + y3)(PQ — y3)

Ae =(2Q + y:)/(PQ — y3), As= (2y3+ Q) Q(y;— PQ), Ag=As4¢/4s
=Q}P+ 2)(21"-1' 1)(Q*+ Qys + y3)/3P(QP — y3)

=20+ y; Q3= -29-0
.Q?, i=3,4:idem
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First, for £9° we have 7i;; <> 7i34; the roots ny, A, and Ny, A; become
the roots ng,/(A;)" =ngp A, and ng/(A;) =ng A, of Z9 [see (C.11)].
Similarly, (QP 4;4,)" = QP i, /iy, =0QF.

Second, for Z3 we have P— 1/P, S — S/P, and 7i;; = n;/n; — n,fny, =
i, /z; or, from (3.5), z; > 1/z;, u— —pu.

Consequently, for 22— 22 in (3.11”) the transform ()" is (P— 1/P,
S S/P, p— —p), leading to 1/(A4,)7=A, and 1/(4,)7= A4, and the two
roots ny, A, and ny, 4, of 2 become the roots np, A, and ng 4, of X2,
Finally, the coefficient Q% of X? is transformed into (9234,4,)"=
Q%A A, =3 for 23.

Third, for the transform X3 — 23 we must consider (fis;« s,
P 1/P, S— S/P, u— —u). Similarly as above (with tedious calculations),
one can show that the two roots ny, As and ng, A5 of X3 become the two
T0OtS 7gy/(As)T =ngy Ag and ng,/(As)7 =ng, Ag of Z3.

In conclusion, for the 12 X, we only have 12 roots: ng Az, 15 B2 Ao,
oy Aop 1 1> Mot Aax, k=0, 1, 2; six of them are obtained by transformations
of the other six. ‘

We restrict the study to a simplified case: S= —2(P+1) and
u=(1—P)/3(1+ P) for the square-root determination of .

3.3. Sufficient Conditions for £,>0 and S= =2(P+1),
3u=(1-P)/(1+P) (Appendix C.4)

The analytic expressions of the 12 2, and of the 12 roots are written
down in Table II as functions of P and of the intermediate parameters and
u, which are in fact also only P dependent. Further, in order to be able to
discuss analytically the determination of the cubic y,; equation, it is
convenient to introduce another parameter ¢ which is also P dependent:

Q=3P/(1+P+P?), yi+0°+y:(y;+Q)4+2)=0

{3.12)
We choose the following determinations of P, Q, and y;:
0<P<l, 0<Q<l, —l<y;<0 (3.13)

The interest of the introduction of the parameter Q(P) is that we can
replace the cubic y, equation (not convenient for an analytic discussion of
its solution as function of a parameter) by two quadratic ones P(Q) and
QO(y,) in (3.12), choosing the square-root determinations compatible
with (3.13):

PR=1-(1-$%"  f=20/3-Q)

(3.14)
Qu= =2y;[1—(1—a)'?],  a=4(1+y;)/(4+ y3)
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For the positivity study we will have to compare the different roots propor-
tional to A,, A,. Then the representations (3.14) give useful information
about the signs of algebraic expressions involving the intermediate
parameters, P and Q, while z,=z, = —P— 14 (1+ P+ P*)"2

Starting with (3.13) for Q, P, y;, and ny, >0, i=1, 2, 3, we find ny, >0
and two subdomains of (3.2) in which the X, are positive. All Q%, QF, 4,,
Ay, k=1,2,5,6, are positive, so it follows that 22 and X? are positive for
ny; outside the eight intervals constitued by the roots. We can choose either
ny; smaller than the smallest root or larger than the largest one. Further,
the roots proportional to n,, or ny, can be ordered if the ratio ng,/ny, has a
P-dependent lower or upper bound. For Z¢° the two roots proportional to
A,, 4,, and Q%, i=1,3, are positive, while 4,, 4,, and Q% i=2 4,
are negative. Only for A4, <ng/ng <A, can the positivity be satisfied.
Choosing for 2? and X? the ng, interval smaller (larger) than the smallest
(largest) root, then this root must be larger (smaller) than ng, 4, (g, 4,).
An analytic positivity proof requires a great deal of algebraic calculation.
We must order the 4,, 4, (20 lemmas) and intermediate results are found:
33 <0, i3, >0, Ayfizy— y3>0, y23+0>0, 2y, + Q0 <0.... We have proved
the following theorem®’ for ny; smaller (larger) than the X2, X3 roots.

Theorem 2. Sufficient conditions for all ~,>0 are
0<P<l-o(—1<y;<0), O0<ny/ngn<PQ,  A;<ng/ng<Ag
As=iinlys,  Ae=2y3+0)/Q(ys—PQ),  Q(L+P+P’)=3P

Theorem 3. Sufficient conditions for all 2, >0 are

0<P<l, (—1<y;<0),  ng/ng>Q/P, sup(d,, As)<ngng <4,
A,=2/Q, As=(Q*+y3+ 0y —23)/Q20 + ys(QP— y3), Ay=1/iiss

It is shown in Appendix C4 that t,7,, having two positive roots,
remains positive for ny; outside the interval constituted by these roots. This
is the case for the ny; intervals of Theorems 2 and 3. These theorems lead
to positive 2; and N,.

In Section 4 we discuss a numerical example of Theorem 2, while here
we present the N, parameers and A4,, 4., and X, numerical values for an
example of Theorem 3.

First, we start with P=3/5, leading to S= —-3.2,z, = —02,z_= —3;
Q=45/49, y;= —088, ;3= —15, #y=015 u=1/12; A,=5/6,
A, =45/98, A4,=10/3, A,=98/45, A,=0.17, A,= —59, A4,= —0.15,
A,=671, A5=253, A¢=0666, A;=262, A;=0643; Q23=05, 05,
03, 08, Q%9=15 —-017, 1, =002, i=1,2,3,4; ngy/ng>75/49,
2.53 < ngsfng, > 6.71.
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Second, we choose ngy, =1, no, =2.224, and find 5.62 < ny; < 14.9.

Third, we choose ng;=8.73 and find ny =025 ny,, =123,
Hos. =37, ny= —3.84, 322, —0.08, n,= —297, 45, 0.09, n;= —6.72,
—125, —0.014, n;, =134, 3.75, 0.014, ;= 9.1, —10.2, 0.54, y,= —0.76,
—0.85, —0.08, p;=6.1, =51, —0.054, j=1,2,3; Z7=16, 2.5, 0.7, 53,
2%=21,11,87,027, 23=15,26,0.74, 54, i=1,2,3,4.

4. PHYSICAL DISCUSSION

We consider the square-velocity model (the discussion is similar for
the cubic one) with the total mass M = 3"$ N, rewritten as

3 4 4
M=my+Y m/D,,  mo=Y ng, m=y m;
1 1 1

D,=1+dexp(t,5+p;1) j=1,2 (4.1)

Dy=1+d;sexp(t3y+7:x+pst)

We have introduced a new coordinate y= y + ux for the models of Sec-
tion 3, while for the spatial coordinates in D; we put 13 y +y3x=13J+ 73X
(F3 =173 — ur,). We discuss the solutions with 7 and x as spatial coor-
dinates. For the model of Section 2, u=0, y=y, 7;=7;.

The previous positivity conditions X, > 0 for N, become for M

2 3
me>0, 2?=Ym>0, Z%=me+m;>0, 2’=)m>0 (4.2)
0

0

if v,7,>0. We notice that (4.2) satisfied alone are insufficient conditions
for 2,>0.

4.1. Some General Results

We first discuss the equidensity lines M = const at ¢, =0 and next the
movement of the shock front and the relaxation toward equilibrium.

4.1.1. Equidensity Lines M(x, y, t=0)=const. We look, in
the x, y plane, at the asymptotic domains associated with the limiting M
values. Depending upon whether 1,  (we recall t,7,>0) and ©5 7+ 7,x
are positive or negative, we find the four asymptotic shock limits of (4.2):
(1) 1, 7>0, 137+ 73x>0, M>my, (ii) 1, 7>0, 159 +7;x <0, M — X%,
(i) t, 7<0, 135 +73x>0, M > X2 (iv) 1, 7<0, T, 7+ F3x <0, M - X3
They define domains limited by equidensity lines parallel to y=0 and
739+ 7,x=0. There exist four different possibilities (see Fig. 1a),
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Fig. 1. (a) Different locations of the shock plateaus. (b) The shock front decreases
continuously. (¢} The shock front has a bump.
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depending upon whether the positive t; y + 7, x axis is in the first, second,
third, or fourth quadrant of the x, y plane. In the case of one spatial coor-
dinate, we only have two shock limits: one in the upstream domain and the
other in the downstream domain. Here we can have, for instance, two
asymptotic shock plateaus in the upstream domain and two others in the
downstream domain. The definitions (4.2) are insufficient to order these
limits and determine which ones are in the upstream or in the downstream
domain.

We consider a shock in a strip parallel to the x axis and look at the
possible ways for the equidensity lines to link the asymptotic plateaus of
both up- and downstream domains. We will say that the upstream domain
contains the two highest plateaus, while the downstream domain contains
the two lowest. We are interested in the possibility that the domain around
the shock has bumps higher than the highest asymptotic plateau. If m; >0
for all i, then Sup M in the whole 7, x plane is the highest plateau X°. If
some m; is negative, then the arbitrary constants 4, in D; [not present in
(4.2)] are important. Among the possible scenarios, we choose two, which
will be illustrated numerically later. We choose two opposite situations,
with such bumps never or always present.

For the first scenario we assume

mo+m>my>0-my<i®<i?<x? (4.3)

and the 73 y+7;x>0 axis in the third x, y quadrant. We choose the d;
such that in the upstream the lowest plateau X? surrounds entirely the
highest one X°. In Fig. 1b we represent the path for decreasing equidensity
lines. Two profiles at x = x, fixed (negative and positive) show that the
shock front decreases continuously from one upstream plateau to another
downstream one. No bump is present. However, (4.3) is compatible with
opposite signs for m, and m,, for instance, m, >0, m, <0. Choosing d,
large and d, small, we can obtain equidensity lines with M larger than 23,
so that bumps can appear. For instance, we can change the initial time
to =0 to t, # 0 and substitute d, exp(z,p,) instead of d, (this possibility will
be illustrated later in Fig. 2).
For the second scenario we assume in Fig. lc

my+my+m;>0, my<0-I%<my<i®<r? (4.4)

The 73 7+ 7,x >0 axis in the fourth quadrant and the d, are chosen such
that in the upstream domain the lowest plateau is an hollow entirely
surrounded by the highest one. It is an isolated basin from which, following
decreasing equidensity lines, we cannot go directly to the shock front.
Further, there is no path connecting directly up- and downstreams plateaus
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through the shock front. In a strip parallel to the x axis, including the
shock, sup M(x, y) for x fixed and J varying is larger than the highest
plateau X% A bump is always present, close to the shock front with
equidensity lines higher than X2, as is illustrated with two profiles at x,
fixed positive and negative. Other scenarios are possible; for instance, m,
and m, can be of opposite sign in (4.4) (m, + m,>0) and we can choose d,
and d, such that in some intervals, sup M for x fixed is lower than X2

4.1.2. Movement of the Shock Front and Relaxation
toward Equilibrium. With the initial time ¢, arbitrary and without
significance, we are interested in large 7 values and finite spatial coordinates
x, y values. Among different possibilities, let us choose p; >0 and p,> 0 for
one of the two i =1, 2 values, while p; <0 for the other j#i. In a first crude
approximation for large time we find

M ~my+m;/[1+d exp(t;y—Ip,|1)] (4.5)

The shock front for large time has moved from y~0 to j~¢|p;|/z;. There
remain practically two asymptotic plateaus m,, mo+m;, the last one
becoming the Maxwellian equilibrium state. We remark that mq +m; >0 is
not a consequence of the positivity conditions (4.2) at 7=0. With the
Boltzmann equation carrying through the positivity, this means that for the
present situations (see examples in Figs. 2 and 3), necessarily mq,+ m, > 0.

These results represent the dominant effects, but less important ones
occur. First, what happens for the equidensity lines t;y+ 7;x = const
(present in the asymptotic plateaus)? From D, we see that they are trans-
lated to —p,t. From the different signs of the p,, we see that the plateaus
23, 2%, 2% move toward the equilibrium state my+m; and m,. At inter-
mediate times the ith component, proportional to m,, gives a contribution
to the shock front for movement toward y= —tp,/t, in a direction
opposite to the dominant jth component, proportional to m;.

4.2. An Explicit Example with a #1

We discuss an example of the formalism of Section 2 with D;=1+4d,
exp(t; y+p;t), j=1,2, or =y, 73=7;. We choose arbitrary parameters
satisfying Theorem 1: We start with P=0.5, S= —15, ny; =1073, np =1,
nes =6.7x 1073, leading to a=19.7x1073 z,= —33x1073, z,= —149,
y3= =18, ne,=75; 1,=122, 122, —0.054, y,=0, 0, —0.54, p,= 107,
—1.14, 0.16, n; = —1, 1, 0.74, n,= —1, 1, —04, n3 =047, 14.5, 2.6,
ny= —7, —4.85, 1.3, j=1, 2, 3. We notice that the sound speed of the two
first components y + ¢;¢ and of the third one x+ yt,/y; + ¢3¢ are such that
|e;| < 1. For the total mass M we deduce m,=28.5, m; = —8.55, m, =16.04,
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my=4.19; 23 =20, 2% =16, £ =12.7. For the arbitrary d, parameters we
choose d, =d, =10, d; =102

4.2.1. Equidensity Lines M =const at t=0 (Fig. 2a). These
correspond to the scenario of Fig. 1b with a shock in a strip around the x
axis. Decreasing equidensity lines connect he asymptotic plateaus 20 — 16,
and then they cross the shock front and spread out in the downstream
toward 12.7 and finally 8.5. The profiles perpendicular to the x axis
decrease continuously from the upstream toward the downstream domain.
We observe the equidensity lines parallel to 75 y +y,x=0.

4.2.2. Shock and Equidensity Lines Moving with ¢,
Equilibrium State (Fig. 2b-2e). For large ¢ and finite x, y only the
second component remains: M ~ 8.5+ 16/[1 + d, exp(y — t)]; the shock is
shifted from y=0 to y=1 relaxing toward the equilibrium state
mg + m, ~ 24.5, while for y — ¢ positive and large, M ~ m,=8.5. From the
expression of D; we observe that the equidensity lines parallel to
y;X+ 1y y=const are translated to const—0.16z. Consequently, both
plateaus 20 and 12.7 join the others, 16 and 8.5.

Looking at the d; values for t=1t, large but fixed, we observe that
d, exp(t,) is large compared to d, exp(—1,), d; exp{(0.164,). Consequently,
the negative term, proportional to m, becomes less important and we can
observe a bump higher than 20 or even higher that the equilibrium value
24.5. This means that in the space, populations of particles larger than at
the initial time or at infinite time can appear.

Figures 2b and 2c present results for N; and M for a small y interval
around the shock, along the lines x =10 and x= —y—10. We observe
both the displacement of the shock front and, at intermediate time, the
presence of a bump larger than the equilibrium state. A plot of M for some
x, y fixed and ¢ varying emphasizes the presence of this bump at inter-
mediate times. We also notice the property, sometimes overlooked, that the
positivity of the macroscopic total mass M is not sufficient to ensure the
positivity of the N,. For a small negative time t= —1.25, both N, and M
remain positive, but, for instance, for 1= —2, M is still positive, while N,
becomes negative around y=0.

In order to follow the displacement of the asymptotic plateaus,
Fig. 2d-2f show results for M with a large y interval. We choose the con-
stant line x = 10 and the two others 75 y + y;(x + 10) =0, which are parallel
to one of the two directions of the asymptotic plateaus. In Fig. 2d for =20
we observe both that the central plateau with hedge 20 becomes thinner
with an enhancement at 28 and of course the moving of the shock. The
compression of the central plateau can explain physically the appearance of
the bump, while mathematically, as we have seen this is due to
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Fig. 2. (a) The M equidensity lines at 1=0 decrease continuously from the highest plateau
to the smallest one. Lines parallel to x=0 and to t3 y + y;x=0 {a=19.7x 1073). (b) A bump
appears at intermediate times. Movement of the shock front (x =10, a=19.7x 1073). (c) At
t= —2, M is still positive, but N, is negative (x + y + 10=0). (d) All the asymptotic plateaus
as well as the bump and the equilibrium state are present. The bump appears and disappears
{a=19.7x1073 x=0). (e,f) The bump is present. Pictures similar to a shock with one
special coordinate. (e) 73y + ys(x+ 10} =0, (f) t3 y + y3(x ~ 10) =0.
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d, — d, exp(20p,). At 1= 150 the bump has disappeared and we observe the
formation of the Maxwellian plateau 24.5. At ¢ = 90, we see four asymptotic
plateaus; the smallest, 8.5, appears due to the displacement of the
75 ¥+ y5x =const line (discussion above). In Figs. 2¢ and 2f the two lines
are parallel to y;x + p;¢ = const, so that, as in a one-dimensional shock, we
observe only two asymptotic shock limits. However, here both constant
limits vary with ¢. We notice that the bump appears on both lines;
however, on one line it is higher than the Maxwellian, but not on the other.

4.3. An Explicit Example with a=1

We discuss an explicit example for the formalism of Section 3 for
which the D, =1+d,exp(r; y +7y;x + p;t) are rewritten:

D,=1+d;exp(t;7+p;t), Jj=12
Dy=1+d;sexp(t3 y+73x+pst)

with 7=y, —ur; and j= y+ ux as a new spatial coordinate. We discuss
an example with the arbitrary parameters satisfying Theorem 2.

We start with a=1, P=01, S=-22, ny,=10"° ny=1,
Mgy =123x107°, leading to u=9/33, Q0=10/37, z,= —4.64x1072
zy= —2.15, y3= —0.187, 1o, =0.56; 1,=4.72, 1.97, —0.393, y,= pr,, put,,
0.19, p,= —4.3,0.72, 0.13, n;; = 1.02, —-0.17, 0.07, n;, = 1.02, —0.17, —0.37,
n,;=1.37,0.08, 0.85, n,= —0.34, —0.17, —0.042, j=1, 2, 3. We notice that
the sound speed of the first two components y+ ux+c;? and that of the
third one x + 74/y; ¥ + ¢3¢ are such that |¢,| < 1. For the total mass M we
deduce my=1558, m; =86, m,=—144, my;= —026, X*=8.717,
2%=1.297, 2*=8456, while for arbitrary d, we choose d,=d,=10°
dy=1072

4.3.1. Equidensity Lines M(y, x, t=0)=const (Fig. 3a).
These correspond to the scenario presented in Fig. 1¢ with a shock in a
strip near the x axis. For the present choice of the d;, inside the shock
domain, sup M for x fixed and y varying occurs at y ~ —2.5 and varies
slowly from 9.66 at x — —oo to 9.92 when x — oc. The ridge stays prac-
tically always at 9.66 for x <0, rising slowly and continuously when x > 0.
All along the shock front a bump exists which isolates both the basin X°*
and the highest upstream asymptotic plateau X% The profiles perpendicular
to the x axis exhibit this bump.

In order to test the importance of the 4; in the shock front we seek the
largest and the smallest possible bumps. Due to m,; >0, m, <0, the most
important one is obtained with d, large and 4, small. For d,=10°
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d,=d,=10"" we find that sup M in the shock-strip lies between 9.9 and
10.16 (for any d; values the difference is equal to m;). On the contrary for
d,=d;=10"% and d, =10% we find a sup M in the strip between >+,
2% +e e~10"° with-values close to the asymptotic upstream plateaus. In
that equidensity lines can cross the shock domain and the bump practically
disappears.

4.3.2. Shock and Equidensity Lines Moving with ¢,
Equilibrium State (Fig. 3b-3d). Due to p,>0, p;>0, p, <0, for
large ¢ and finite x, y only the first component remains: M ~ 1.6 + 8.6/
{1+d,exp[47(7—1t]}. The shock is moving from y=0 to j=1; the
equilibrium state (¢ — o0 ) has the value my + m,; =9.02, while when y—¢ is
large and positive we must observe the plateau 16. These are the dominant
effects. However, for not too large time, the second component
~ —145/{1 +d, exp[0.7(27 + ¢)]} moves in the opposite direction. The
third component determines the displacement of the lines parallel to
73y + 73x = const, which are translated to const —1.3¢. In both upstream
and downstream domains we must observe the displacement of the
plateaus 2° — X? and my+ m; — m,. Finally, we notice that the change

'
Y T3 eYax=0

Shock moving
with t

\TJY*?JX"’
(a)

Fig. 3. (a) The M equidensity lines at =0. A bump is present in the shock domain. Lines
paraliel to x=0 and to 7; 5 +7,x=0 (a=1). (b, c) Movement of the shock. (b) For j=0,
the curves rise continuously when ¢ is growing. (c) For x =0 and | | — oo we recover the t =0
shock limits. (d) M for 73(5—10)+7;x=0. Bump at r=0, movement of the shock;
asymptotic £* and Z° limits replaced by Z2 and mq (a=1).
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Fig. 3 (continued)

d;,— d; exp(p;t,) gives, for finite x, y values, a larger contribution for the
positive first component m, D; ! and a smaller one for the oher negative,
components.

Figures 3b and 3c present both N, and M relaxation curves for x, y
along two lines. The first one, y =0, at the bottom of the shock, is parallel
to the shock front, while the other, x=0, is perpendicular to it. Along
y=0 we observe, when ¢ is growing, a continuous rising of the curves up
to equilibrium. The difference between the two |x| » oo limits, which is
equal to my=0 at r=0, falls progressively and disappears at equilibrium.
Notice that these limits are ¢ dependent, so that for ¢ fixed we never recover
the r=0 limits. Such a situation cannot arise in one spatial dimension.
Along the profile x =0, perpendicular to the shock, we observe the moving
of the shock, the small bump at the top of the shock front, and the
spreading of the equilibrium state. Contrary to the previous case, for ¢ fixed
and |y sufficiently large, we recover the asymptotic liits of the initial time.

Figure 3d presents a curve along a line 75(7 — 10) + 7;x =0 for a large
x (or ¥) interval, parallel to one direction of the asymptotic plateaus. We
observe the bump at =0, the moving of the shock, and the appearance of
the equilibrium state. The two asymptotic | 7| — oo limits 2* and m, + m,
at t=0 are progressively replaced by X? and m,. This is explained by the

displacement —p;¢ <0 of the equidensity lines 75 j + 7;x = const toward
the x <0 half-plane.
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5. CONCLUSION

From the present work we know that positive (2 + 1)-dimensional
shock waves exist for two discrete Boltzmann models. For the analytical
positivity proof we were obliged to understand the mathematical structure
of the asymptotic shock limits, which are physically relevant quantities. As
a consequence of the laborious analytical calculation of Appendix C, we
can now construct numerically positive shock waves for which the
positivity has not been analytically proved. For the models of Section 3,
giving up the restriction S= —2(P + 1) (leading to Theorems 2 and 3), we
have constructed positive solutions.’

Taking advantage of the analytical results presented here, 1 am
currently investigating two other classes of solutions: semiperiodic ones
with the first two components complex conjugate, and solutions with six
asymptotic shock limits.

APPENDIX A. SUFFICIENT ASYMPTOTIC POSITIVITY
CONDITIONS

Theorem. Let
3
M=my+Y mD;!,  D,=1+de%,
1
d;>0, yreal, j=1,2, 0<D;'<l

If one of the two conditions

2 3
11,>0,  me>0, me+m;>0, Yy m>0, Y m>0 (A.1)
0 0

14T, <0, Mo+ m;+m; >0, mg+m;>0, j=12 (A2)

is satisfied, then M >0 provided that the d; satisfy sufficient conditions.
We remark that if m;>0 (or <O0), then M>m, (or my+m;)
+> 1 m;D;>', we must prove the following lemma.

Lemma. If P=p,+3] p,D; ' and if one of the two conditions

7,7,>0, Po>0, Po+pitp>0
or (A.1)
TIT2<0, p0+pj>0’ _]=1,2

is satisfied, then P >0 provided that the d, satisfy sufficient conditions.

822/52/3-4-26
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(i) Case 7,7,>0: If p;>0 (or p;<0), j=1,2, then P> p, (or
Do+ p1 + po)u positive. It remains p, <0, and we choose p, <0, p,>0,
and assume 7;>0. We have

P=[po+pi+pr+(po+ prus+(po+ pi)uy+ pottiuy /D1 Dy,
w=de” (A3)
Only p,+ p, can be negative. If so, we find
us(pouy +p)>0 if d;>|pi/pole™” and y> —yo, yo>0
Pot+pPi+prt(pi+po)u,>0
if dy<|(po+pi+p2)/(pot+pi)le™™” and y< —y, (Ad)

with y, fixed but arbitrary. Then P> 0 for all y real values.

(ii)) Case t;1,<0 and we assume 7, >0, 7, <0. If p, <0, then p, >0,
p,>0, po+ pi+ p2>0, only pou,u, <0 in (A.3), and we find

uy(po+ p2+ potty) >0 if d,<|(p2+po)/pol and y=0 (A5)
w(po+pi+poun)>0  if di<|(po+pi)pdl and y<O
If po>0, only p,+ p,+ p, can be negative in (A.3). If so, one p; (or both)
is negative,

(po+p)1+u)+p, >0 if d>|(po+p,)/p)|—1 and y=0

(Pot+p)I+u)+p,>0 if dy>|(po+pi)/pl —1 and y<O0
(A.6)

Finally, P is positive in both cases for all y values.

APPENDIX B. MODEL WITH THE FIRST TWO COMPONENTS
DEPENDING ONLY ON y

B.1. Relations

The solutions
3
Ni:n0i+ Z nﬁDj_l, i=1,...,4
j=1

Dij=1+diexp(t;y+p;1), j=1,2
Dy=1+dsexp(t;y +p3t+73x)
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with 23 parameters n,, n;, p;, T,, v, substituted into the nonlinear discrete
model Eq. (1.1) lead to 19 relations

hy=np, j= 1,2, No3Mos = ARg3No4, a(nygnys +ny3n,,) =2nyny,
(B.1)
nyp;=n5(p;+1,)= j4(Tj_Pj)=anj3nj4‘n}1
= —a(ngsny + noahj) + njngy {B.2)
N3y (ps+73) =n3(p3—y3) = —n33(p3 + 13) =n34{15— p3)

= ANy — N3 N3

= —a(ng3Nss + NogN33) + Roy Mgy + Ngpfigy {B.3)

a(nhsy + npnsg) = n,(Ry, + nyp) (B.4)

We have put nj; =ng +ng,. Relations (B.1), (B.2) are for the first two
components j=1, 2, while (B.3), (B.4) are those of the third one. Since a is
not fixed, we have five free parameters.

B.2. Solutions

We define two new parameters z,=n,/ns, j=1, 2, and write P=z,z,
and S=z, +z,. We choose (P, S, 1y, ny,, Hes) as the arbitrary parameters.

B.2.1. Parameters for the First Two Components j=1, 2.
For simplicity we introduce intermediate parameters 71, = n,,/n;; and from
(B.1), (B.2) deduce

iy = —2z;/(1 4 z)), a=8P/[S(S+ P+1)] (B.5)
nj3(azj_ ’7}1) = _a(n032j +hge) + ﬁj1”2+1 = szzj/(l - Zj) (B.6)
whence all n;, t;, p;, and a are known:

n;3=2{P[ng(1+ ;j) +2nfia 1+ noulz,+ P)}(z;— z,)(z,— P), i#j
Ny =2Z;N3, ny=np= =2z;n;/(1 +z;) (B.7)

2t,z;=(z;— D[ a(ngsz; + nes) + 2z;n/(1+2;)] (B3)
p;= “Tjnjs/(”jl + ”j3) .

B.2.2. Parameters for the Third Component. We introduce
other intermediate parameters y;=n;,/n;, and 7y, =n,,/ns,, i=3,4, and
obtain from (B.3), (B.4) their expressions as functions of the free
parameters P, S.
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y24+2y5;[1-2(1+P)/S]T+1=0> yi = —B' + (B *— 1)
B'=1-2(1+P)/S
fizz= —y3(1 + P)/P(1 + y3)= —S(1 + y;)/4P, fisy = Pfis;
(Fiy3 + fizg) Y3+ fasfizg(l + y2)=0

(B.9)
(B.10)

From (B.3), n3, can be written down with the intermediate parameters:

ny(aPrjy— y3) = —afys(nes P+ nos) +Hoy + y3non (B.11)

whence all the parameters ns;, ps;, Ts, y3 of the third component are
known:

Ap(P+1—=8)/(P+1+8)=ngp +ne/ys+a(P+ 1) (1o + nos/PY/ (1 + y3),

N3 = V3l
N (P+1—=8)2(P+1)=np+no P '+ (P+1+S)
X (Rgy + ngy ¥3/2P(1 + y3) (B.12)
= (N33 + N34)(n31 N3y — AN 337134)
N3q = Pns;, P32n33034 = (N33 + N3g) (N33 N3 — AN33N34)
T3(n33 + n34) = p3(n3e — 1133), Va(n3p + n3y) = p3(nay —n3y)

with y; and a written in (B.5)—~(B.9) as functions of P, S.

B.3. Determination of the Asymptotic Quantities Z;

We want to express the 12 quantities X3 =372_,n;, 27 =ng+n3,

3= ]3=0nj,~ as functions of the free parameters P, S, ng;, Hgy, and #ng;.

Invariance properties allow us to calculate explicitly only six of them.

B.3.1. Invariance Properties. From the relations n;=n;,
j=1,2, ny/ny, =y, we deduce

X, X, with the transform (ng, < ngy, Y3 y3 ') (B.13)
From the relations n;/n, =z;, j=1, 2, we get
>, %, with the transform (ny; <> ngy, P> P, S SP™1) (B.14)

However, the ny; 2, are written as polynomials in ny; of the second degree
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with coefficients that are functions of P, S. From #n, = ny, ng,/any; we see
that (B.14) is equivalent to

oy 2y = Q3(ng3 + noy A13) (o3 + Roy Az3) = oz 'y
=Q7 A, AL a(ngs + noy/ad ;) (ngs + noy Afza) (B.14')
where Q7 means Q(P—> P!, S—»>SP™'), AL,=---.
For the calculated 2'; we use the following method: Since all the 7 are

linear combinations of the n;, the same property holds for the ;. One can
write

I104=n01n025(S+P+1)/8Pn03 (B.lS)

and then ny, 2, is a second-degree polynomial in ng;. It turns out that the
roots are n,,;, j=1, 2, multiplied by functions of P and § only. Further, all
the roots are real.

B.3.2. £2. From (B.7) we obtain the linear n,, relations for X%
and X%:
(P+1—S)n, +ny)=4Pny+4ny, + 25n3;
(.P+ ]. —S)2%=4Pn03+4n04+2S02 + (P+ 1 + AS’)I’I()}~
2
(S—P—1) Y ny=2m0,S/P+2(P+ 1)ng; + 13 S(S+ P +1)
j=1

j=

(S—P—1)23=(S+ P+ 1)(nys +ny, S/2P) + 2no, S/P
while (B.15) leads to the quadratic relations and the transforms
(B.13)~(B.14') to 23, 22:
”032%=Q%(”oa_”mAﬂ(nos-”ozAz)

Noy 23 = Q25(ngs — 1oy A2) (o3 — oy A1) (B.16)
QRI=0Q2=4P/(P+1-S8), A= —(P+1+S8)/4P, A,= —S/2P=1/aA,
"032%:‘9%(”03‘”01142)(”03—"02142)

”032‘21:Qi("m_nm/‘ll)(”os_nozl‘ll) (B.17)
Qi=(1+P+S)/(S—1—-P), Q2=25/P(S—1-P)

B.3.3. £93. Adding to n,,, ny; [see (B.12)] either ng, or ny;, we get
the linear relations for 29 .,
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(P+1—8)EB =8(P+1)(ngs P+ 164)/S(1 + y3)
+(P+14S)ng/ys+2(P+ )ng,
(S—P—-1)2P/(S+P—1)=np+2ne,(P+1)/P(P+S+1)
+ (P+ 1)(ngy + 102 y3)/P(1+ y3)

while (B.15), the identity (1+ y;)>= y;4(P+1)/S, and the transforms
(B.13)-(B.14') applied to X%, i=2, 3, give 2%, i=1 and 4:
nes 2P = QP (no; — noy A3) o3 — 1oy A4)
No3 £ = QP (ng3 — Aynos)(nos — A3ney)
QP =2P(1+ y;)/(1+P-S5)
QP =00(y;~> yyH=y3'QP
A;= —(P+1)/P(1+ p3)
Ay=A5(y; = y7")=A3;
Ay=—(P+S+1)y:/2P(1 + y;)
Ayg=Ayys— y3")=A4/y;
N3 P = QP(ngy — oy A3) (o3 — 1oy A3)
N3 29 = QP (ngs — 1ot Ag)(ngs —ngy Ay) (B.19)
QP=(P+S+1)/(S—P-1), QP =2P(P+1)/(S—P-1)

(B.18)

B.3.4. 3. We need other y, identities:

B+ ) =4[2+ y;(1+ P+ S)/S] (B)
S(S+3P+3)=[S+2(P+1)/(1 + y3)I[S+2(P+ 1) y3/(1 + y3)] '

To the linear ng; relations 22, i=1, 3, of Section B.3.2 we add, respectively,
ny, and n4,:

(P+1—=S8)Z3=2P(3+ y3)ngs+2(3+ yi)ng,
+[28+(P+1+S)yi]lnep+2(P+S+1)ny

Jnoy(S+P+1) 1+P+S
P 2P

2P +2 2(P+1
><[n01 <S+—-1+y )+n02 (S+————(1+y)y3>]
3 3
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With (B.15)-(B.9") we find the quadratic relations and with the transforms
(B.13)-(B.14') deduce 23, 23:

o327 = Q7(no3 — noy As)(ng3 — Ny As)
"0323=-Qg("o3—"0126)(”03—”0225)
—As=(P+S+1)/P(3+ y,)
—Ag=[25+ y;(P+ 1+ 8)12P(3+ ys3) (B.20)
As=A5(y;—> y77Y)
Ag=Ag(y3— i)
Q1=2PC3+ y:)/(P+1-5),  23=21(y;~>y;’})
nos 23 = Q3(no3 — 1oy As)(ng3 — nox As)
N Z3 = Q3(ngs — 1oy Ag)(93 — noy A) (B.21)
Q3=0B+3P+S)/(S—P—1), Q3=2P(S+P+1)[(S—P—-1)

B.4. Sufficient Positivity Conditions for the Z;
We define a scaling parameter S= —s(P + 1), and

oz = noy P/(P + 1), A;=(P+1)B,/P, Ziz(P+1)§i/P5

= {B.22)
Zi:ﬁ032i(s+ 1)
The above relations for #ny; X; become
2=QP+1) P~ (g3 — By 1o, )fig; — Byny) (B.23)

where the roots B,, and B,; are obviously the B, and B, deduced from
(B.16)—-(B.21) as written down in Table L.

Lemma 1. Let
B, =(s—1)/4, B, =5/2, By= —(1+y,)!
By=(s~1)y3/2(1+y3),  Bs=(s—1)/3+y;)=2(s—1)Be/(s-3)
Bo=[2s+(s— 1) p31/23 + y3) =[—2y3+ s(1 + y3)1/4(1 + y3)
B;=B,y,, B,=B,y,

. Bi=(s—1)ys/3ys+1),  Bs=[s(1+y5)—21/4(1 + y3)
I

s>3: yy=y; = ~{L+2[1+(s+1)"2)s}) (B.24)
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then the following properties hold:

() ys+1<0<y,+3, B,>0, i=1,.,6
B;>0, B¢>0, B,<0, B,<0, s+ y;(s—2)>0
(ii) Bg<B,<Bs, B, <Bs<B;
(iii) B,<B,, B;<B,<B,
Proofs. (i) y;+1<0is obvious; (y;+3)s2=s—1~(s+1)"?>0 s
equivalent to s(s—3)>0 and
=2y s(1+ p3)=2/s)[2+ 2 —=s)s+ 1)) < (2/s)[2— (s + 1)*] <0
Consequently all B,, Bs, B are positive, while B,, B, are negative.
(ii) —1+B¢/B,=(y;—1)/(1 + y3)(1—5)<0
—14+ BB, =(y;—1)/(3y,+1)>0
—1+4Bs/Bg=(s+1)/(s—3)>0
Also note the relations
2B, =B¢+ Bs=B,+ B,
By+By=—-1-> —1+B¢B,=1—B¢/B,>0
(iii) By/B,=12—1/2s<1/2
—~1+4+B)/By=(s+ D)V [s—1—(s+1)"]/2s>0
By/Bi=1/2+1/2p,< 12

Theorem 1. All the 2, are positive if the following sufficient
conditions are satisfied:

§>3, P>0, ) Y3=1Ys3, 0 <boy <ny, Be/B, (B.25)
Ry By <3 =ng PI(P+1)<ng B,

Proofs. For X7. All the coefficients of 73, as well as the roots ny, B;,
) k=1,2, j#k are positive. It is sufficient for 22> 0 that 71y, be less than
the inf of the roots. From the lemma ny; < 1y, B¢/B, <ny, and B, < B,. The
smallest root is ny, B, and 22> 0 if 71g3 < ng,; B;.

For 2%, For X9 the coefficient of 71y, is positive and the two roots
proportional to B; and B, are negative. X9*>0 for g3 >0. For X the
cocfficient of 73, is negative and the two roots are positive. For the
positivity, applying the lemma, it is sufficient that ny, B, < #ig; < ng, B,. For
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2P the coefficient of 7%, is positive, one root is positive, and the other is
negative. For £9°>0 then 7y, > ng; B;. For 29 the coefficient of 73, is
negative, with one root positive and the other negative; for positivity it is
sufficient that fig; <ng, B,. Due to B; < B, < B, we see that both 2?7 and
29 are positive with (B.25).

For X3, All four coefficients of 7§, are positive and the four roots
ng, Bs, no, Be, no, Bs, and ng, Bs are positive. For positivity it is sufficient
that #y; be less than the smallest root. From the lemma and the hypothesis
(B.25), ny, B, is smaller than all roots and X7 >0 for 71y; <ng B;. In con-
clusion, (B.25) is sufficient for the positivity of all X,. Finally, we notice
that z;=z, =(SF \/A )/2 are real and negative for s >3 and P> 0 because
A=8*—4P>0and S= —s(P+1)<0,

2z, =s(P+1)(—1F/8), 6=1—4P[s(P+1)]1"> (B26)

From 14z, =x+[x*+(P+1)(s—1)]"* with x=1-—s(P+1)2<0, it
follows that 1 +z, >0, while S< -3, z_ < —2.

B.5. Condition 7,1,>0

The sign of t,1, is given [see (B.8)] by the product of two quadratic
polynomials in rg;

7172”(2)3/02(1)‘*'1):9—1%, %=n(2)3+2n03“/(1+zz‘)+ﬂ/zi (B27)
o =nj/a, fa=ny ngy,, aw® > 4p '

The two roots ng; , of the polynomial 7; are real and have opposite signs
(Bz;<0). Then t,7,>0 if, for instance, 0<ng; <inf(ny;,, ), where the
positive roots are

Mo, = —0/(l+2, )44, >0, 4. =[a/(1+2,)1>—fz  (B28)

First we show that ng; , is the smallest root and second that 7,7,>0
for (B.25).

Lemma 2. If P>0, s>3 we find the inequalities: (i) 4. >4_,
(i) d, +4_ <oa® A/(1+P+S8) (iil) ngs,, <ngs:_-
Proofs. (i) We notice that \/A_ =z, —z_ and find

A, —A4_=.JA[B/P—a*(S+2)/(1+P+5)*]>0

because S+2 <0, >0, §>0.
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(ii) We find
A, +4_—a24)/(1+P+S)?=2(c>—4p/a)/(1 + P+ §) <0
dueto 1+ P+S=(1+P)(1—ys)<0.

(iii) First we have (J4,—/4_) <4, +4_<oa?4/(1+P+S)
and taking the positive determination of the square roots we find

JA, —JA_—a JA)(1+P+S)<0 ot ny,,, <ng.,_.

For the solutions satisfying Theorem 1 [Eq. (B.25)],

if ngs,, >(P+1)n,By/P and 0<ng; <hngs ., then 1,7,>0
(B.29)
Lemma 3. We define
0=0,+0,
Q1 =no By(P+1)[aB,(P+1)/P+2/(1+z2,)]
Q,=ngplz_+2B(P+1)/(1+z,)]

Then (B.29) is satisfied if Q@ <0.
We remark that

Ongy/aP= —4, + [o/(1+2., )+ By(P+ 1)ne,/P]?
with 4,,a, B given by (B27)-(B.28) and if Q<0 then /4,>
/(1 42z, )+ B no(P+1)/P or equivalently ny; ,, > (P + 1)ng, B,/P,

Lemma 4. Q,>0, Q,<0. We recall that 1+2z, >0 [(B.26)] and
obtain 20,(1 +z, J(P+ 1)ng, = x — /3 <0 because x = (P—1)s~ /(P +1)
and d =x2+1—s"2>x% On the other hand,

Qi /no Bi(P+1)=2(P+ 1)/s-+-(1+\/5)/(1 +z,.)>0

Consequently, if in (B.25) ny, =0, then O <0 and this property holds for
any ny, if it holds for ny, sup =ny, Be/B;.

Lemma 5. Q<0 for ny, =ny, sup. From Lemma 3 we have
21+z2,) Qnp(P+1)<J=(P—1)/(P+1)—s./b
+2Bs[1+./0+2/s(P+1)]
0=0,+0,, ys=y5 (B.30)
O=1+5—(s+y;)[s(1+/3)+2/(P+1)]
0,=[2—(s+ D[P+ 1)+s(1+/8)2]/[s— (s+ ¥ —1]1<0
0> =(s+2)(x—+/5)
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with
x=s/(s+2)-2/s(P+1)
F=x>+4[(s+1)/(s+2V+ (s*—5s=2)/s*(P+ 1)(s+ 1)]
Due to 6 —x*>0, we find J, <0, leading to 0 <0 and Q0 <0.

Theorem 1bis. Because the conditions (B.25) on the five arbitrary
parameters lead to N, solutions with t,7,> 0, then for these solutions their
asymptotic positivity conditions X', > 0 are satisfied.

APPENDIX C. MODELS WITH THE TWO FIRST
COMPONENTS DEPENDING ONLY ON y+ pix
AT t=0

C.1. Relations

The solutions

3
N,=ny+ Z njiDj—L ‘
j=1

D;=1+d;exp(t;y +7y,x +p;1), i=1.,4, v,=1 j=1,2

with 26 parameters ny;, n;, 1,, ¥;, p;, and y substituted into the nonlinear
discrete model Eq. (1.1) lead to 21 relations: a=1 and

V=UT, = 1,2, Flog = Roy Moa/Mos

np3nm4+np4nm3=nplnm2+np2nmh p#m (C 1)
nulp;+v,)=nplp,— )= —nplp;+ 1) =nu(t,— p))
= j3nj4—nj1nj2:n01nj2+n02}1j1-—n03nj4—n04nj3, j=l, 2,3

C.2. Solutions

We again define z;,=mn;/n;, j=1,2, P=2z,z,, S=2z, +z,, and choose
(P, S, ny;, j=1, 2, 3) as the five arbitrary parameters from which we deduce
the others. We note that n,, is obtained from (C.1).

C.2.1. Parameters for the Two First Components j=1, 2.
We again introduce intermediate parameters 72, =n;/n; and from (C.1)
deduce
ny=2z,/C, Ci=u—1—(u+1l)z

_ (C2)
Ap=2z,/E;, Ei=Ci(—p)=—p—1+(u—1)z



936 Cornille

with j=1,2. At this stage u is unknown; however, the compatibility
relation p, m=1, 2 in (C.1) becomes z, + z, =, 71, + fi,p 7,5, and leads to
u(P, §) and so to 71, (P, S):

2=(14+P+S8)/(1+P—-S)*—8P(1+P+S8)/S(1+P—-5)* (C3)
The rhs of (C.3) must be positive and u has two possible determinations.
From the definitions of z;, and 7, we see that the n; are known (as
functions of the arbitrary parameters) once 7, is obtained. From (C.1) and
the n; we get p;, 7;, and y;:

Ry = Mj/(Zj - ﬁjlﬁﬂ)
Mj= -n03Zj - n04 + nOlﬁ]2 + nozﬁjl

(C4)

Mg = Z;N3, Ry =Hn;h;3, i=1,2

sz(l_zj)Mj/zzj’ pj=TJ(1+Zj)/(Zj_1)a V= U j=12
C.2.2. Parameters for the Third Component j=3. We
introduce intermediate parameters y, = ns,/ns, and 7iy;/n5,, i=3, 4, and the

p,m=1,3 and 2,3 (Cl) relations become #y3z;+7y =7+ y3hij,
leading to

iy =2[(n~1)/C,Cy—(n+1) ys/E, E, ]
A= —2P[(u+1)/C,Co— (u—1) y3/E, E, ] (C5)
(fis3 +7134) Y3 + Azgfizz(1+ p3) =0
and a cubic y; equation
(y3+ {20 = D[ C, C, y3/E  Ey + E, Ey/C, C,] —4ys(u*+ 1)}
+yiC,Co[1—p+ (u+1)/P1+ y: E Ej[1+pu+ (1 —p)/P]1=0
(C.6)

In (C.6) all coefficients C;, E;, u are known P, S functions; consequently,
(C.6) gives y; and (C.5) 7i5; also as P, S functions. Now the construction of
the n5; parameters is possible once ns, is obtained:

N3y = (No37i3a + Noafiyy — Moy — Moy ¥3)/ (Y3 — Azsfizg)

_ _ (C.7)
3 = V3N, Nj; = N33, i=1,2
Finally, the same relations as in (B.12) hold for 75, y;, and p,
2p3n3303, = (N33 + A34) (13, M35 — M33May)
T3(N33 + M30) = p3(nsy —na3) (C.8)

73(n32 + n3y) = p3(ny, — nyy)
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C.3. Determination of the Asymptotic Quantities X;

As in Appendix B, two important properties exist: (i) the roots of
2;=0 are of the type ng; =ny multiplied by a function of P, § alone;
(ii) there exist relations between the roots corresponding to different i
values.

At the linear ng, level of the relations if an identity holds, then (i) holds
at the quadratic ny; level of the relations:

2;=Q(ng; + Z ”Oj“ij(Pa S)

=3
If a);000,=014;, then
2= (ng3 + no; o) (Rgz + Moz %) Mos (C9)

These identities are trivial for 29 and difficult to prove for £2 and X3. We
begin with the trivial case.

C.3.1. 2. From (C.7) we remark that the X, are linear com-
bination of the ng;; we quote Z9/Q% —p,;:

I=10 RBogR3s/fsg— Ny Tisg/ Y3 —Ngy Y3/fisg

i

Il

21 RgTissffisg— g /iy — Nyl
(C.10)

_s _ _
NosHi5s/ V3= Noy za] Y3 — Noa iz

3
4: nyy J’3/ﬁ§4 — o1 /i3g — Moy V3/fiag

I

i
i

]

Since the coefficients of 7, are the product of those for n,, and Hop, WE
apply (C.9) and find the quadratic ny; polynomials for X,n;:

”032(1)3 = 9?3(’103 — Ashg Mo — Agng,)
”032(2)3 = Q(2’3(n03 — Aang Wnos — Asng,)
N3 29 = QP (ngs — Azng ) (o3 — Asng,)

03 03 i (C.11)
N3 2y = QP (ngs — Ayng; (ngs — Ayng,)

Asy=n3/y;, Ay=ys/nz,, 2327733, Ag=1/fz,
QP = 34/(y3 — FizsFisy), QP = 0%, QP=1,00, QP =QF yy/fis
In fact, with the help of invariance properties, it was sufficient to calculate
2P for i=1 and 3, then deduce X, for i=2 and 4:

(i) The relations ny,/n;, = y; and ny/ny =7y, p; ! with the exchange
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12 become ngy/ny, = y;' and ny/ny, =h,. Let us consider P, S and
¥3, f5; as independent variables and get

29— 9 with transform (ng, < ngy, y3— y3 'l fis/ys—=hs)  (C12)

We easily verify with this transform that the roots ny, 45 and ny, 4, of £
become the roots nq, A4 and ny, A, of 29, while Q%9 becomes 29°.

(ii) For the exchange 3 <» 4 we see that 7i,; <> 71, and deduce
2P > X9 with transform (ng; <> ngy, iy« fiy;) (C.13)

For instance, for 29? the root ny; = 1y, 45 becomes ng, = ng, As(fizy > f3y) =
Roi/As OF oy = n02A4 root of X9 Similarly, the root ny; = Ny Ay for X,
becomes ngy = Ny A3(7izs = fizg) = Hoy/ Ay OF Roy =1y A4 10Ot Of X,

C.3.2. £2. We write down the useful formulas
C,C,E E,=16P(S+P+1)—(S*—4P)/S*(S—P—1)
(1—=p>)(1+P—-5)= —4S(P+1)+8P(1 + P+ S)/S
E\E,=2(1+P+ S)[S(P+1)—4P]/ (C.14)
S(1+P—-S8)—2u(P—-1)
CiCy=E E)(p— —p)
For simplicity we put oy, = A,/44; and rewrite (C.9):
2i=Q(no; + Z ok Akif A31)
k3

If Ali'12i= ).31-)&4,-, then
2, =Q,[nos + (A1/A3:) 101 1103 + (A2i/43:) o2 1/mo (C.15)

a. 2?,j=1,2. First for 22 we use the expression (C.2)-(C.4) for 1
and obtain:

Ay =[(P+1=8)+S+P+1)(S—2P)+4P(P—1)

Aoy =[W(S—P—1)+S+P+1}(S—2)+4(1—P)

Ay =4P(14+P—S)/S (C.16)
Ay =2(4P—S?)E,E,/C,C,

Q2=20,,/(1— 21+ P—S)?
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Now we prove the identity (C.15). We find
Aiyhoy=(E\E;} (S—P—1)*8/2(S+ P+1)

In (C.14), E, E, contains P, S terms and terms proportional to u. For the
square, u* becomes S, P dependent with (C.3), but terms proportional to y
remain:

Ay Aafd=(1+P+S)[S(P2+1)—4P(P + 1) + 8PYS]
—4P(P— 1)+ u(1—P)(1+ P—S)[S(P+1)—4P] (C.17)

For the calculation of 15, 4,,/4, from (C.16) we still find terms proportional
to p and others only S, P dependent. For both terms we identify
with {C.17).

Second, for the exchange 2% « 2% we remark from (C.2) that n;, & n,
or C;«» E; or p«> —pu. We find finally in both cases

o327 = Q{(ngs — noy A ) (o3 — Nz 4)
No3 Z% = Q5(noy — oy A2) oy — noz 4,)
A= —2y/hsy, As= —Ay/hs, A=A (p— —p)
@2 =20y, /(1 =)L+ P—S)P,  Q3=Qu— —p)

(C.18)

b. 2Z,i=3,4. First, for 23, with the help of (C4) for n;; we find
Azz= —4ip, Ay = —A41, Az =Ax(p— ’H)z —Ag(u— —u)
Aa3=2(S*—4P)/P, Q2=24,/(1 —p@*)(1+P—S) (C.19)

With (C.19) we prove the identity 4,34, = 43345, We find
Aizdpy= —pH(S—P—1)2(S=2+[(S=2)(S+P+1)+4(1-P)]?

and substituting (C3) for u? we can identify with 1;;45,=
8(S2—4P)(S— P —1)/S. Consequently, the quadratic representation (C.15)
holds and the roots are ng; = —ng;d /445

We prove that ng, A, is a common root to 22, i=1 and 3. Using the
identity (C.15) for i=1 and (C.19) we get

/123/133 = *123/211 = '141//111 = '121/131 = *A2

Finally, from the relation 4,5/433 = /,3/4;; (with p— —u) we see that the
other root is gy A, =no; A5(u — —p). Second, for 22 with (C4) for n, we
find

Aaa= Ay~ —p)= —1s, A3 =2(S*—4P)P

Cc20
Aaa= —A11, Qi=2134/(1—ﬂ2)(3*1)—1)2 ( :
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In the transform 3 — 4 with ngy <> 1o, and n; — ny, ny and ng, are not
changed. This means that for the product of the two factors ny; —ny,4, in
(C.15), only ny;, j=1, 2, do not change and we still have a product of two
similar factors. Consequently, the identity A 44,4 = 43444, necessarily holds.

In order to prove that 22 and X2 have the common root n,, 4, it is
sufficient to notice that

/114//134 = )~44//124 = /111/131 = —4,

Finally, from /124//134 = Ay4/A3s (With g > —p)= —A4,, we see that the other

root for 22 is ng, A,. We write down 22, i=3, 4:
”032%’—"9%("03_”0122)(”03‘“’702A2) (C21)
"032421=Qi(”o3_”01A1)(’103—nozzx)

with Q2, i=3, 4, given in (C.19)(C.20) and 4;, 4,, i=1,2, in (C.18).

i

C.3.3. Z}=32 o n;=n5;+%%. To the linear ny polynomial 27 in
(C.15), we add

— 7 0%y 7 - =
Ny = 3,29 (No3 Ay + Roalisy — Moy V3 — oy ) Mg

Here 7i;;=n,,/n;, is equal, respectively, to yi, 1, Ay, fi5 for i=1,2,3, 4.
Writing the sum as a linear n,, polynomial, we want to prove that the coef-
ficient of ng, is the product of those for ny, and ngy,. This leads for 273 to the
conditions

Ay = QU Agfizg + Ayifizs + Y3+ Ag), i=1,.,4 (C22)
with the 4; defined in (C.16)-(C.19). If (C.22) holds, the roots of ny; 22 are
o3/Mor = (3,99 /34 — Q1 11,/ 43,)/23, Q) =1y, Q9+ Q7

_ _ (C.23)
Roa/Noy = (”39(2)3 Vaffizg — Q?'ly//lsi)/g?

We write down identities useful for the proof of (C.22):
[4P — (P +1)S]/(S*—4P)
=[PA+P—-S)+1+P+ S|/ [uH(S—P—-1)+1+P+S5]
(u—l)P/l41—(u+1)/131= [4P—-S(P+1)]E\E, (C.24)
(E\E;) '={[4P-S(P+1)]1S
+uSHP—1)(S—P—1)/(S+P+1)}/8P(S*—4P)
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These identities depend upon g, P, and S, which are considered as indepen-
dent variables. For their proofs we identify both sides of the relations,
substituting u? by (C.5).

a. 2?,i=1,2. For 23 the lhs of (C.22) is y, and we rewrite
2y3[4P_S(P+ 1)]_/12127_134/141'}'7733/131 (C.22’)

From (C.5) for #1535, 713, we see that the rhs is linear in y,. Further, y; is
only in the first term of the lhs. We identify terms proportional to or
independent of y;. In the rhs the term proportional to y; is
2[(u—1)PAy — (u+1)A3,1/D, D, and with the identity (C.24) it is equal
to the y; term of the lhs. The y,-independent term in the rhs is 2/C, C,
multiplied by the factor —(u+1)PAs + (u—1)4;,. With the identity
(C.24) this factor becomes (S>—4P)E,E,, so that the y;-independent
term is —A,,. For 23, we start with 23 and use the transform
(noy = Ny y3 = y3 ', Ay— Ay yy'), while the roots are obtained
from (C.23):

o3 27 = Q7 (no3 — oy A5) (193 — oy Ag)
nps 23 =Q3(ng; — ”0126)(”03 - ”0225)
As= (9?3/7534 + AIQ%)/‘Q%
Ag=(QF ysffizs + 4,21)/2} (C.25)
Q=024 Q%
As=(QF yiffiza+ Q34,)/23
"26 = (933/ﬁ34 + 9522)/93
b. 23,i=3,4. For X3, the lhs of (C.22) is 71,; and we rewrite
24P = S?) sz + fisa/P) = y3ds + Apy = Vidoa(p— —p)+4y  (C227)

With (C.5) for 7,3, ni5,, the lhs has a structure similar to the rhs:
y3H(—p)+ H(u) with

H(—p)=4(4P—S*)[u(S—P—1)~S— P—1)/SE, E,

and we must verify that H(u) = 4,;. Using the third identity (C.24), we find

2PH(p) = [u(1—P)S(S—P—1)/(S+P+1)—4P+ S(P+1)]
= [W(S—P-1)—S—P—1)]""

In the product we use {C.3) for u* and identify with 1,;. For X3 we
exchange 3 < 4 and finally obtain

822/52/3-4-27
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”0323 = (ng3 — Asno; Y(nos _anoz)gg
"0322 = (ng; — novzs)(noa —ngAs) (C.26)
Q=1 QP +Q3, Q=P +Q;

C4. X, for S= -2(P+1) and p=(1-"P)/3(1 +P)

C.4.1. Calculations of the Z;. It is useful to introduce a new
parameter @, a function of P; from (C.5)-(C.6) we find for the cubic y,

equation and 7y, 7iy,:
0=3P/(1+P+P), pi+Q°+ys(y;+Q)4+Q)=0 (©27)
3Piis;;= Q2P+ 1)+ y5(P+2), 3 =0(P+2)+ y;(2P+ 1) '

For X9 the expressions of A, 4,, and Q% in terms of y,, fi;3, and 7,5, are
the same as (C.11). For X2, due to the use of the transform y— —pu, we
write down some parameters as functions of u, P:

C,Cy= —2(1+ P> +4P)/3(P+ 1)+ 2u(P— 1)=4P/Q(P + 1)
E E,=C,Coli—> —p)= —4P/(P+1)
Ay = —8(P*+ P+1)E E,/C,C, (C.28)
Ay = —6u(P+1)2P+1)+8P*+2P+2
Q2P+ 1)(P+2)=1s,/2
which lead with our chice for the square root of u?=[(1 — P)/3(1 + P)]*to
A, =12P, A,=2/P, A,=0/2, A,=2/0
Q2=6P*/(2P+ 1)(P +2)=2P23 (C.29)
Q3=6P/Q(P+2)(2P+1)=Q32P
For 23 we make explicit the expressions (C.25) and write down Q9° for the
Q3 i=3,4 [see (C26)]
As=(0>+ yi+ Qr;—3y5)/(2Q + y3)(PQ ~ y3)
Ae= (20 + y3)/(PQ — y3)
As=0(0*+ y3+ 0y —3y3)/(25 + 0)(y3— QP)
Ag= 23+ Q)/(Q(ys—PQ) (C.30)
def: X =9P(fi337iss— y3) = (P+2)(2P+ 1)(Q* + y3+ Qy3)
XQ1=3P(QP—y5)(2Q + y5)
X0Q3= —3P(2y;+ QNPQ — y3), XQP = —7,,9P
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C.4.2. Sufficient Positivity Conditions for Z;,. Let us choose
0< P<1; then the cubic equation (C.27) with 0<Q <1 has three real
roots. We are interested in the y; root such that —1< y; <0, which, of
course, cannot be written down explicitly in terms of Q. However, this
determination can be defined by appropriate choices of two associated
quadratic equations:

PR=1-(1-p4",  p=20/3-0)
Q= -2y[1-(1-2)""Va,  a=4(1+ y;)/(4+ y3)

from which we easily find the following results.

(C.31)

lLemma 6. If —1<y;<0,then 0<a<l,0<Q@<1,0<f<1, and
O<P<l.
In the sequel we always assume the y; determination such that

0<P<l, —l<y;<0, 0<Q0<1 (C.32)

and for 2, > 0, we seek conditions on P, ny,, ng;.

a. Positivity for 2. Since the roots are positive, we must check the
signs of n3, and the locations of the roots.

Lemma 7. A,<A,, A, <Ad,, A,<A,, 22>0.

A, < A, is obvious from (C.29); 4, <4, is equivalent to 0<1+4
(P+ P?); A, < 4, is equivalent to 0 < 4(1 + P) + P?; and Q2 as well as P, Q
are positive.

Lemma 8. X2>0if ny, <ngpA,/A, =np, PO, 0<ny <ng A,.
Due to PQ <1, we get ny, <ngy, and

no Ay =1inf(ng; Ay, no; Ay, B Ay, Ry A3)

Since the coefficients of n3; are positive and n,; is outside the four intervals
constituted by the roots, then 3% > 0.

b. Positivity for £93. Here two roots are positive (45, 4, positive),
while the two other are negative (A4, A,). Similarly, the coefficients of n2,
for i=1,3 are positive, while those for i=2,4 are negative. For these
results we must first find inequalities for y,/Q in (C.31).

Lemma 9. —1<y;/Q< ~1/2 and y,/Q+ (2P +1)/(P+2)<O.

From (C31) for Q=0Q(y;,«) we have both the inequalities
(1—a)"?<1—a/2 and >1—« and the first two inequalities of the lemma
follow. For the last inequality we define a scaling parameter y and from the
cubic equation (C.27) find Q= Q(p):

F=yy/Q > 0= -2+ 1)/(7+ 7 +7°), —l<j<-~1/2 (C.33)
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From (C.31) for P=P(f) and (1—p?)"?>1—p*> we find the bound
P <20Q/(3— Q). Further, since (2P + 1)/(P + 2) is increasing, it is bounded
by the expression obtained by substituting the Q (or j) dependent bound
of P:

7+ QP+ 1D/(P+2)<(1+27)(F+ D1 — )25 + 7>+ 7°) <0

Lemma 10. 7;;,<0, 775, >0.
From (C.27) for 5, and Lemma 9 we find

3P /Q=2P+1+(P+2)y,/0<0
3i13,/Q=P+2+(2P+1)y;/0>1-P>0

Lemma 11. 775, — ;>0 and Q%>0 for i=1,3 (<0 for
i=2,4),and 4,>0, 4,<0, 4,<0, and 4,>0.

From the explicit expression of X given in (C.30), we see both the first
inequality and Q9* <0. From the expressions (C.11) linking 29 and the
other Q% and Lemma 10 the signs of Q% follow. The signs for the roots
Ay, A,, k=3,4, given in (C.11) are consequences of the signs of
Y3, N33, Hag.

Lemma 12. 0<A,<A,.
We find A, — A3 = (y;— fis37134)/y37is4-and apply Lemmas 10 and 11.

Lemma 13. X% >0if 0<ng A; <ng; <ng Ay.

For each X% one root is positive, while the other is negative. From the
signs of the coefficients of n2, and of the roots we obtain 29 >0, i=1, 3, if
Noy > Rg Az 29 >0, i=2, 4, if 0<ny; <ng A,. On the other hand, due to
Lemma 12, the interval (ng; A5, no; A4) is not empty and ny; must stay
inside this interval.

¢. Positivity for 3. Here all the roots as well as the coefficients of
n3, are positive.

Lemma 14. @3>0,i=1,2,3.

Due to X >0 in (C.30), the sign of Q3 is that of 20+ y;>Q + y;>0
from Lemma 9. With this lemma the sign of 23, given by —(2y,+ Q), is
positive. Finally, Q3 written down in (C.26) is the sum of two positive
terms.

Lemma 15. 73, <Q/2, 4P/Q>1, and Q3> 0.

We have 373, =Q(P+2)+ y5(2P+ 1) and we find the first inequality.
For the second we get 4P/Q=4(1+ P+ P?)/3>1. Let us rewrite
Q3 =0% 4+ Q2 and apply these results:

Q3 = 134(Q9 4 2PQ3/113,) > 1134(2F + 4PQ3/Q) > 713,25>0
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Lemma 16. 4,>0, 4,>0, k=5,6.

These results follow from the explicit expressions (C.30) and from the
above inequalities: y, <0, 2y, + 0 <0, and y;+Q>0.

The roots and the signs of nZ, are positive, so the 27 will be positive
for ny; less than the smallest root and we must compare the A,, A,.

Lemma 17. A <A, A;<As, and PQA < 4.
Using Lemma 9 and the expressions written down in (C.30), we find
Ag/As=Ao/Ads= —(2p;+ Q)20 + y3)/Q(Q* + y3+ Qy3 — 3y3)
1 —Ag/As (C.34)
=[Q(Q*+ y3+7:0) +2(ys+ @+ ¥)1/Q(Q* + y3+ Qys —3y3) >0
PQAs—Ag=[(P+1)(Q+ y3)+ Q0+ Py;1/(y3 — PQ) <0

We notice that Q@ + Py;> Q0+ y;>0.

Lemma 18. 27>0if 0 <ny; <ng Ads and ny <ng PO.

It is sufficient to prove that ngy, 44 is the smallest among the four roots
of 2. From Lemma 17 and the assumptions of Lemma 18 we find
oy A <ngy POAg < ngy Ag < hoy As and ng, Ag <ng; As.

d. Positivity for all ;. For the positivity of 22, 23, % separately
we have found three ng, intervals. It remains to show that their intersec-
tions is not empty. We want to prove that the interval (ng; A5, ng, A) is the
intersection of (0, ng, A,), (0, no, ), and (ng; A5, ng; Ay).

Lemma 19. Ad,< A4, and 4, <Ag< A,.
These results come from the explicit expressions

Ag— A, =F3,(2P +1)/2P(y,— PQ) <0
As—Ag= Q2P+ 1)(Q%+ yi+ Qy3)/393(PQ — y3) <0 (C.35)
Ag—Ay=6(P+1)(Q*+ yi+ Qy3)/Q(y3 — PQ) i34 <0
Theorem 2. Sufficient conditions in order to have all 12 2,> 0 are
0<P<1 (—1<y;<0), 0<ng <neuPQ,  noyd;<ng<ngdg
with A;=7,,/y, and Q, y,, fi3; functions of P given in (C.27), while 4, is
written down in (C.30). Finally, we write z, =z, such that the product is P

and the sum —2(P+1),

z,=-P—1+x(PP+P+1)"2  z,41>0, z_+1<0 (C36)
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C.4.3. 7,7,>0. The sign of 7,7, is given by the product of two
quadratic ng; polynomials:
1, 7,4n,3(P+ 1) =9, 75, T =nky—2np30 4 + Mo Rey/Z 4
defo, =ng/E, +ne,/C., C,=—-2/[1+(P+2)/(P*+P+1)"]
E, = —6P/[2P*+2P—1 £ 2P+ 1)(P*+ P+ 1)"*]

with E., C, the quantities E;, C, for z;=z, defined in (C.2) for the
general formalism and calculated here for S=—-2(P+1) and
3u=(1—P)/(1+ P). For each i value the two roots of the polynomial 7;
are real and opposite (z, <0). It follows that z,7,>0 if, for instance,
0 <ny <inf(ng ., nos,,_), where the two positive roots are

M3, =%y ++/44, Ay =0 —ngnglz, (C.38)

From Theorem 2 we must have rng; < #y; g <, 4; (see Lemma 19). Then
a sufficient condition is

7,7,>0 if ngs,, >neg A =ny/2P (C.39)

Lemma 20. C, <0, E, <0, a,<0;and C_>0, E_>0,a_>0.
These are consequences of the assumption (C.32) for P and ng, > 0.

Lemma 21. def X, =ny/z, +ny/4P*—a,/P; then X, <0 and
Ros.., > Moy /2P.
We have

X, =np(l/z, —1/PC.)+ny(1/4P*~1/PE.)
Since the coefficient of ny, is positive and ry, < ng, PQ it follows that
X, /np<ljz, —1/PC_+Q/4P—Q/E
= —(P’+5P2+1)2(P*+ P*+ P)<0
Consequently, we get X, no, +a% <a? or
(/2P —a ) <a? —ng gz, =42

Taking the positive square-root determination in both sides of the
inequality, we get A2+ o, =ng,; . > ng/2P.

Lemma 22. defX_=ny/2P—0o_; then X_<0 and ng, >
N /2P.
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We have X_ =ny(1/2P—1/E_)—ny,/C_. The coefficient of ng, is
still positive for our solutions with X, >0, ny, sup < ng, PQ, then

X_[ngp< —~1/C_+QR2—QP/E_=Q2P+1)2— (PP +P+ 1) <0

Consequently, we get ny, /2P <o_ <a_+ 47 =ny,_.

Theorem 2bis. The sufficient conditions of Theorem 2 lead to N,
solutions with 7,1, > 0; then, for these solutions, their asymptotic positivity
conditions X';> 0 are satisfied.

C.4.4. Another ny; Interval Leading to Z;>0. For 22 57 all
coefficients of nZ; as well as all roots are positive. Instead of the ng, interval
less than the smallest root as in Theorem 2, we choose the s, interval
larger than the highest root and the two 2, will be positive. Further, if this
highest root belongs to the interval (ny, 43, 1o, 44), then Z9 > 0 with ny, 4,
replaced by the highest root. We still assume 0 <P<1 and —1< y,;<0.

Lemma 23. If ng/ng,>A,/A,=Q/P>1 and if ng/ng >sup
(A,, As), then Z2>0, 23> 0.
Due to the assumption and Lemma 7, we find

noy Ay =sup(ng Ay, npA,, ne1 A,, ngy Ay)

and 27> 0. Further from the relation

Az/zz _Zs/As =3n3,/(2y; +0)>0
we see that
n01A5/n0225 >A2A5/Z225 >1

Adding the results of Lemma 17, we get
no1 As=sup(ng; As, gy Ag, no; g, Ny As)
and 27> 0.

Lemma 24. A;<d,<A,, As<A4,, and £ >0 for sup(d,, 45) <
Ros/Mor < Ag.
These results are deduced from the identities

A JA,—1=(2P+ 1)(2y;+ 0)/3<0
A3/A,—1=(2P+1)0(2Q/3Py,—1/6) <0
AS/IL“ 1= (Q2 + y% + 1 Q2P+ 1)(y;— Q)/3(2Q0 + ys QP — y3) <0

and applying the previous results: y;<0, 2y, + Q@ <0, O+ y;>0. We
obtain the following theorem.
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Theorem 3. The X, are positive if P and the n,; are chosen such
that:

O0<P<l1 (~—1 < y,<0), n31>n02Q/P, (C.40)
sup(d,, 4s) <ngy/ng <A,

We notice that numerically we have found 4, < A,.

The problem of 7,7,>0 remains as in Section C.4.3. This property
holds if ny; > sup(ng; ,, , 13 . ), which gives for the allowed interval the
sufficient condition

10> 0 il ngs., <ngd,=ng 2/Q (CA1)

Lemma 25. def X, =ng/z, +4ny/Q>—4a,/0>0 and no ., <

2ng,/Q.
“,,z,, C,, E,, and «_,.. are written down in (C.36)-(C.38). We

have
X, =no,(4/Q° —4/QE ) +np(l/z, —4/0C )

Due to £, <0, the coefficient of ng, is positive; for ny, we find (2P +1)
[P—1+4(1+P+P*)"Y]/3Pand X, >0. Then we get X, ny; + % >a? or
(n012/Q —a,)*>4,. Taking the positive square-root determination in
both sides, 10, 2/Q > A" +a, =ny, . .

Lemma 26. defX =ny/z_ +4n,,/Q°—4o_/Q0>0 and ny, <

2n4,/Q.
We have

X_=no(4/Q° —4/QE )+ ny,(1/z_ —4/QC)
The coefficient of n,, is positive:
1/Q—1/E_=[3+ Q2P+ 1)(1+ P+ PH)*]/6P
while the coefficient of n, is negative:
1/z_ —4/QC_=Q2P+ 1)[P—1—(1+ P+ P})?]3P
X _ is positive if it is positive for sup ng, = ng, P/Q. We find
X_/ngy>[6—P—P>+2P+ 2P+ 1)(2—P)(1 + P+ P})'?]/3PQ >0

From X _ng +a? >a? or (ny,2/0Q —a_)> >4 _. With similar calculations
as above we find ny,2/Q —a_ =ny(2/Q — 1/E_)— ny,/C _; the coefficient
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of ny, 1is positive while the coefficient of ny, is negative. However, for
sup ng, the sum is still positive. Consequently, taking the positive square
root in both sides of the last inequality, we find ny,/20 —a_A4Y? or
Ros.-_ <2ng,/Q.
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